Chapter - 4 (Chemical Kinetics)

Exercise Questions:

Question:1 From the rate expression from the following reaction, determine their order of reaction and the dimension of the rate constants.
i.) $\quad \mathbf{2 N O}(\mathrm{g}) \rightarrow \mathbf{N} 2 \mathrm{O}(\mathrm{g})$ Rate $=\mathbf{k}[\mathrm{NO}]^{2}$
ii.) $\quad \mathbf{H 2 O} 2(\mathrm{aq})+3 \mathrm{I}^{-}(\mathrm{aq})+2 \mathrm{H}^{+} \rightarrow \mathbf{2 H 2 O}(\mathrm{I})+\mathbf{I 3}^{-}$Rate $=\mathbf{k}\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]\left[\mathrm{I}^{-}\right]$
iii.) $\quad \mathrm{CH} 3 \mathrm{CHO}(\mathrm{g}) \rightarrow \mathrm{CH} 4(\mathrm{~g})+\mathrm{CO}(\mathrm{g})$ Rate $=\mathrm{k}[\mathrm{CH} 3 \mathrm{CHO}]^{3 / 2}$
iv.) $\quad \mathrm{C} 2 \mathrm{H} 5 \mathrm{Cl}(\mathrm{g}) \rightarrow \mathrm{C} 2 \mathrm{H} 4(\mathrm{~g})+\mathrm{HCl}(\mathrm{g})$ Rate $=\mathrm{k}[\mathrm{C} 2 \mathrm{H} 5 \mathrm{Cl}]$

Answer:
i.) \quad Given rate $=k[N O]^{2}$

Therefore, order of the reaction $=2$
$\mathrm{K}=$ Rate $/[\mathrm{NO}]^{2}$
Dimension of $\mathrm{k}=\mathrm{molL}^{-1} \mathrm{~s}^{-1} /\left(\mathrm{molL}^{-1}\right)^{2}$
$=\mathrm{molL}^{-1} \mathrm{~s}^{-1} / \mathrm{mol}^{2} \mathrm{~L}^{-2}$
$=\mathrm{L} \mathrm{mol}^{-1} \mathrm{~s}^{-1}$
ii.) \quad Given rate $\mathrm{k}=[\mathrm{H} 2 \mathrm{O} 2]\left[\mathrm{I}^{-1}\right]$

Therefore order of the reaction $=2$
$\mathrm{K}=$ Rate $/[\mathrm{H} 2 \mathrm{O} 2]\left[\mathrm{I}^{-1}\right]$
Dimension of $=\mathrm{mol}^{-1} \mathrm{~s}^{-1} /(\mathrm{mol} / \mathrm{L})(\mathrm{mol} / \mathrm{L})$
$=\mathrm{L}^{-1} / \mathrm{mol} / \mathrm{s}$
iii.) \quad Given rate $=\mathrm{k}[\mathrm{CH} 3 \mathrm{CHO}]^{3 / 2}$

Therefore, order of reaction $=3 / 2$
$\mathrm{K}=$ Rate $/[\mathrm{CH} 3 \mathrm{CH} 0]^{3 / 2}$
Dimension of $\left.=\mathrm{mol}^{-1} \mathrm{~s}^{-1} / \mathrm{mol} / \mathrm{L}\right)^{3 / 2}$
$=\mathrm{L}^{3 / 2} \mathrm{~mol}^{-1 / 2} / \mathrm{s}$
iv.) Given rate $=\mathrm{k}[\mathrm{C} 2 \mathrm{H} 5 \mathrm{Cl}]$

Therefore, order of the reaction $=1 \mathrm{k}=$ Rate $/[\mathrm{C} 2 \mathrm{H} 5 \mathrm{Cl}]$
Dimension of $=\mathrm{molL}^{-1} \mathrm{~s}^{-1} / \mathrm{molL}^{-1}$
$=\mathrm{s}^{-1}$

Question:2 For the reaction:

$2 \mathrm{~A}+\mathrm{B} \rightarrow \mathrm{A} 2 \mathrm{~B}$

The rate $=k[A][B]^{2}$ with $k=2.0 \times 10^{-6} \mathrm{~mol}^{-2} \mathrm{~L}^{2} / \mathrm{s}$. Calculate the initial rate of the reaction when $[A]=0.1 \mathrm{~mol} / \mathrm{L},[B]=0.2 \mathrm{~mol} / \mathrm{L}$. Calculate the rate of reaction after [A] is reduced to $0.06 \mathrm{~mol} / \mathrm{L}$.
Answer:
The initial rate of the reactionis
Rate $=\mathrm{k}[\mathrm{A}][\mathrm{B}] 2$
$=\left(2.0 \times 10^{-6} \mathrm{~mol}^{-2} \mathrm{~L}^{2} \mathrm{~s}^{-1}\right)\left(0.1 \mathrm{~mol} \mathrm{~L}^{-1}\right)\left(0.2 \mathrm{~mol} \mathrm{~L}^{-1}\right)^{2}$
$=8.0 \times 10^{-9} \mathrm{~mol}^{2} \mathrm{~L}^{2} \mathrm{~s}^{-1}$
When [A] is reduced from $0.1 \mathrm{~mol} \mathrm{~L}^{-1}$ to $0.06 \mathrm{~mol}^{-1}$, the concentration of A reacted $=(0.1-0.06) \mathrm{mol}^{-1}$ $\mathrm{L}^{-1}=0.04 \mathrm{~mol} \mathrm{~L}$
Therefore, concentration of B reacted $=1 / 2 \times 0.04 \mathrm{~mol} \mathrm{~L}^{-1}=0.02 \mathrm{~mol} \mathrm{~L}^{-1}$
Then, concentration of B available, $[\mathrm{B}]=(0.2-0.02) \mathrm{mol} \mathrm{L}^{-1}$
$=0.18 \mathrm{~mol} \mathrm{~L}^{-1}$
After [A] is reduced to $0.06 \mathrm{~mol} \mathrm{~L}^{-1}$, the rate of the reaction is given by,
Rate $=\mathrm{k}[\mathrm{A}][\mathrm{B}]^{2}$
$=\left(2.0 \times 10^{-6} \mathrm{~mol}^{-2} \mathrm{~L}^{2} \mathrm{~s}^{-1}\right)\left(0.06 \mathrm{~mol} \mathrm{~L}^{-1}\right)\left(0.18 \mathrm{~mol} \mathrm{~L}^{-1}\right)^{2}$
$=3.89 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$

Question:3 The decomposition of NH3 on platinum surface is zero order reaction.
What are rates of production of N 2 and H 2 if $k=2.5 \times 10^{-4} \mathrm{~mol}^{-1} \mathrm{~L} / \mathrm{s} /$
Answer:
The decomposition of NH3 is
$2 \mathrm{NH} 3 \longrightarrow \mathrm{~N} 2+3 \mathrm{H} 2$
Rate of reaction,
$\mathrm{dx} / \mathrm{dt}=1 / 2 \mathrm{~d}[\mathrm{NH} 3] / \mathrm{dt}=\mathrm{d}[\mathrm{N} 2] / \mathrm{dt}=1 / 3 \mathrm{~d}[\mathrm{H} 2] / \mathrm{dt}=\mathrm{k}$
Where k is the rate constant. Since, reaction is of zero order,
Rate of reaction $=\mathrm{dx} / \mathrm{dt}=\mathrm{d}[\mathrm{N} 2] \mathrm{dt}=\mathrm{k}$
$=2.5 \times 10^{-4} \mathrm{M} \mathrm{s}^{-1}$
But, $\mathrm{d}[\mathrm{N} 2] / \mathrm{dt}=1 / 3 \mathrm{~d}[\mathrm{H} 2] / \mathrm{dt}$
: d[H2] / dt = $3 \mathrm{~d}[\mathrm{~N} 2] / \mathrm{dt}$
$=3 \times 2.5 \times 10-4 \mathrm{~mol}-1 \mathrm{~L} \mathrm{~s}-1$
$=7.5 \times 10-4 \mathrm{M} \mathrm{s-1}$

Question:4 The decomposition of dimethyl ether leads to the formation of $\mathbf{C H} 4, \mathbf{H} 2$ and CO and the reaction rate is given by
Rate $=\mathbf{k}[\mathrm{CH} 3 \mathrm{OCH} 3]^{3 / 2}$
If the pressure is measured in bar and time in minutes, then what are the units of rate and rate constants?

Answer:
If the pressure is measured in bar and time in minutes, then unit of rate $=\mathrm{bar} / \mathrm{min}$
Rate $=\mathrm{k}(\mathrm{p}$ CH3OCH3)
$\mathrm{k}=$ Rate $/(\mathrm{p} \mathrm{CH} 3 \mathrm{OCH} 3)^{3 / 2}$
Therefore, unit of rate constants $(\mathrm{k})=$ bar $\mathrm{min}^{-1} / \mathrm{bar}^{3 / 2}$
$=\mathrm{bar}^{-1 / 2} / \mathrm{min}$.

Question:5 Mention the factors that affect the rate of a chemical reaction.

Answer:

1. Concentration:

On increasing concentration of reactants, the probability of colloisions of molecules increases hence rate of reaction increases.
2. Temperature:

On increasing temperature, the kinetic energy of molecules increases, hence, the number of collision increases. Therefore, the rate of reaction also increases.
3. Pressure:

On increasing pressure, the molecules of gases come closer to each other. As a result their collisions increase and hence rate of reaction increases.
4. Surface Area of Reactants:

On increasing surface area of reactants, the rate of reaction increases. For example, the powdered metals react faster than the metals in a lump.
5. Nature of reactants:

If the reactants are ionic in nature than the rate of reaction is faster than those in which reactants are molecular in nature.

Question: 6 A reaction in second order with respect to a reactant. How is the rate of reaction affected if the concentration of the reactant is

i.) Doubled
ii.) Reduced to half?

Answer:
Let the concentration of the reactant be [A] = a
Rate of reaction, $\mathrm{R}=\mathrm{k}[\mathrm{A}]^{2}$
$=\mathrm{ka}^{2}$
i.) If the concentration of the reaction is double i.e., $[\mathrm{A}]=2 \mathrm{a}$ then the rate of the reaction would be $\mathrm{R}=\mathrm{k}(2 \mathrm{a})^{2}=4 \mathrm{ka}^{2}=4 \mathrm{R}$
Therefore, the rate of the reaction would increased by 4 times.
ii.) If the concentration of the reactants is reduced to half i.e., $[A]=1 / 2$ a the rate of the reaction would be
$\mathrm{R}=\mathrm{k}(1 / 2 \mathrm{a})^{2}$
$=1 / 4 \mathrm{ka}$
$=1 / 4 \mathrm{R}$
Therefore, the rate of the reaction would be reduced to $1 / 4^{\text {th }}$.

Question: 7 What is the effect of temperature on the rate constant of a reaction? How can this temperature effect on the rate constant be represented quantitatively?

Answer:
The rate constant is nearly doubled with a rise in temperature by 10° for a chemical reaction.
The temperature effect on the rate constant can be represented quantitatively by Arrhenius equation,
$\mathrm{K}=\mathrm{Ae}^{-\mathrm{Ea} / \mathrm{RT}}$
where, k is the rate constant,
A is the Arrhenius factor or the frequency factor,
R is the gas constant,
T is the temperature, and
Ea is the energy of activation for the reaction

Question:8 In the pseudo first order hydrolysis of ester in water, the following results were obtained:

t/s	0	30	60	90
$\left[\right.$ Ester $/ \mathbf{m o l ~ L}^{-1}$	0.55	0.31	0.17	0.085

i.) Calculate the rate of reaction between the time interval 30 to 60 second.
ii.) Calculate the pseudo first order rate constant for the hydrolysis of ester.

Answer:
i.) Average rate of reaction between the time interval 30 to 60 seconds $=\mathrm{d}[$ Ester $] / \mathrm{dt}$
$=0.31-0.17 / 60-30$
$=0.14 / 30$
ii.) For a pseudo first order reaction,
$\mathrm{K}=2.303 / \mathrm{t} \log [\mathrm{R}]_{0} /[\mathrm{R}]$

For $\mathrm{t}=30 \mathrm{~s}, \mathrm{k} 1=2.303 / 30 \log 0.55 / 0.31$
$=1.91 \times 10^{-1} / \mathrm{s}$

For $\mathrm{t}=60, \mathrm{k} 2=2.303 / 60 \log 0.55 / 0.17$
$=1.96 \times 10^{-2} / \mathrm{s}$
For $\mathrm{t}=90, \mathrm{k} 3=2.303 / 90 \log 0.55 / 0.085$
$=2.07 \times 10^{-2} / \mathrm{s}$
Then average rate constant, $\mathrm{k}=\mathrm{k} 1=\mathrm{k} 2+\mathrm{k} 3 / 3$
$1.98 \times 10^{-2} / \mathrm{s}$

Question: 9 A reaction in first order in A and second order in B.

i.) Write the different rate equation.
ii.) How is the rate affected on increasing the concentration of B three times?
iii.) How is the rate affected when the concentration of both A and B are doubled?

Answer:
i.) The different rate equation will be $=\mathrm{d}[\mathrm{r}] / \mathrm{dt}=\mathrm{k}[\mathrm{A}][\mathrm{B}]^{2}$
ii.) If the concentration of B is increased three times, then $-\mathrm{d}[\mathrm{R}] / \mathrm{dt}=\mathrm{k}[\mathrm{A}][3 \mathrm{~B}]^{2}=9 . \mathrm{k}[\mathrm{A}][\mathrm{B}]^{2}$ Therefore, the rate of reaction will becomes 9 times.
iii.) When the concentration of both A and B are doubled, $-\mathrm{d}[\mathrm{R}] / \mathrm{dt}=\mathrm{k}[\mathrm{A}][\mathrm{B}]^{2}$
$=\mathrm{k}[2 \mathrm{~A}][2 \mathrm{~B}]^{2}$
$=8 \mathrm{k}[\mathrm{A}][\mathrm{B}]^{2}$
Therefore, the rate of reaction will increase 8 times.

Question :10 In a reaction between A and B, the initial rate of reaction was measured for different initial concentration of A and B as given below:

$\mathrm{A} / \mathrm{mol} / \mathrm{L}$	$\mathbf{0 . 2 0}$	0.20	0.40
$\mathrm{~B} / \mathrm{mol} / \mathrm{L}$	0.30	0.10	0.05
$\mathrm{r}_{0} / \mathrm{mol} / \mathrm{L} / \mathrm{s}$	$\mathbf{5 . 0 7} \times \mathbf{1 0}^{-5}$	$5.07 \times \mathbf{1 0}^{-5}$	$\mathbf{1 . 4 3 \times 1 0 ^ { - 4 }}$

What is the order of the reaction with respect to A and B ?
Answer:
Let the order of the reaction with respect to A be x and with respect to B be y
Therefore,

```
ra}=k[A\mp@subsup{]}{}{x}[B\mp@subsup{]}{}{y
    5.07\times 10-5 = k[0.20] x[0.30] % %..i
```

$$
\begin{aligned}
& 5.07 \times 10^{-5}=\mathrm{k}[0.20]^{\mathrm{x}}[0.10]^{\mathrm{y}} \ldots . . \mathrm{ii} \\
& 1.43 \times 10^{-5}=\mathrm{k}[0.40]^{\mathrm{x}}[0.05]^{\mathrm{y}} \ldots . . \mathrm{iii}
\end{aligned}
$$

Dividing equation I by ii, we obtain
$5.07 \times 10^{-5} / 5.07 \times 10^{-5}=\mathrm{k}[0.20]^{\mathrm{x}}[0.30]^{\mathrm{y}} / \mathrm{k}[0.20]^{\mathrm{x}}[0.10]^{\mathrm{y}}$
$=[0.30]^{\mathrm{y}} /[0.10]^{\mathrm{y}}$
$=(0.30 / 0.10)^{\mathrm{x}}=(0.30 / 0.10)^{\mathrm{y}}$
Dividing equation iii. By ii, we obtain
$1.43 \times 10^{-5} / 5.07 \times 10^{-5}=\mathrm{k}[0.40]^{\mathrm{x}}[0.05]^{\mathrm{y}} / \mathrm{k}[0.20]^{\mathrm{x}}[0.10]^{\mathrm{y}}$
$=2.821=2^{\mathrm{x}}$
$\log 2.821=\mathrm{x} \log 2[$ taking \log on both sides]
$\mathrm{X}=\log 2.821 / \log 2$
$=1.496$
$=1.5$ (approx.)
Hence, the order of the reaction with respect of A is 1.5 and with respect to B is zero.

Question:11 The following results have been obtained during the kinetic studies of the reaction:
$2 \mathrm{~A}+\mathrm{B} \rightarrow \mathrm{C}+\mathrm{D}$

Experiment	$[\mathrm{A}] / \mathrm{mol} / \mathrm{L}$	$[\mathrm{B}] / \mathrm{mol} / \mathrm{L}$	Initial rate of formation of D/mol $/ \mathbf{L} \mathrm{min}^{-1}$
I	0.1	0.1	6.0×10^{-3}
II	0.3	0.2	7.2×10^{-2}
III	0.3	0.4	$2.88 \times \mathbf{1 0}^{-1}$
IV	0.4	0.1	$2.40 \times \mathbf{1 0}^{-2}$

Determine the rate law and the rate constant for the reaction.
Answer:
Let the equation is,
Rate $=\mathrm{k}[\mathrm{A}] \mathrm{x}[\mathrm{B}] \mathrm{y}$
Then According to given data.
$($ rate $) \mathrm{I}=6.0 \times 10-3=\mathrm{k}(0.1) \mathrm{x}(0.1) \mathrm{y}$.
(rate) $I \mathrm{II}=7.2 \times 10-2=\mathrm{k}(0.3) \mathrm{x}(0.2) \mathrm{y}$
(rate) III $=2.88 \times 10-1=k(0.3) \times(0.4) y$
(rate)IV $=2.40 \times 10-2=k(0.4) x(0.1) y$
From equation (2) and (3) $y=2$
(rate)II $/$ (rate) III $=7.2 \times 10^{-2} / 288 \times 10^{-1}$
$=\mathrm{k} / \mathrm{k}(0.3 / 0.3)^{\mathrm{x}}(0.2 / 0.4)^{\mathrm{y}}$
$=7.2 \times 10^{-2} / 288 \times 10^{-1}=(0.2 / 0.4)^{y}$
$0.72 \times 10^{-1} / 0.288=(1 / 2)^{y}$
$1 / 4=1 / 2)^{y}$
$(1 / 2)^{2}=(1 / 2)^{y}$
$Y=2$
From equation (1) and (4) $x=1$
(rate)I $/($ rate $) I v=6.0 \times 10^{-3} / 2.40 \times 10^{-2}$
$\mathrm{K} /(0.1 / 0.4)^{\mathrm{x}}(0.1 / 0.1)^{\mathrm{y}}$
$0.6 / 2.4=(1 / 4)^{x}$
$(1 / 4)^{1}=(1 / 4)^{x}$
$\mathrm{X}=1$
Hence, rate $=k[A][B] 2$ because $x=1, y=2$.
Rate law is rate $=k[A][B] 2$
Hence calculation of rate constant with the help of eq (1) rate $=k[A][B] 2$
$6.0 \times 10-3=k(0.1)(0.1) 2$
$\mathrm{k}=6.0 \times 10-310-36.0 \times 10-310-3$
$\mathrm{k}=6.0 \mathrm{~mol}-2 \mathrm{~L} 2 \mathrm{~min}^{-1}$

Question:12 The reaction between A and B in first order with respect to A and zero order with respect to B . Fill in the blanks in the following table:

Experiment	$[\mathrm{A}] / \mathrm{mol} / \mathrm{L}$	$[\mathbf{B}] / \mathrm{mol} / \mathrm{L}$	Initial rate / mol /L min^{-1}
I	0.1	0.1	2.0×10^{-2}
II	-	0.2	4.0×10^{-2}
III	0.4	0.4	-
IV	-	0.2	2.0×10^{-2}

Answer:
The given reaction between A and B is first order with respect to A and zero order with respect to B .
Therefore, the rate of the reaction is given by,
Rate $=\mathrm{k}[\mathrm{A}]^{1}[\mathrm{~B}]^{0}$
Rate $=\mathrm{k}=[\mathrm{A}]$
From experiment I, we obtain
$2.0 \times 10^{-2} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~min}^{-1}=\mathrm{k}(0.1 \mathrm{~mol} / \mathrm{L})$
$\mathrm{K}=0.2 / \mathrm{min}$
From experimentII, we obtain
$4.0 \times 10^{-2} \mathrm{~mol} / \mathrm{L} / \min =\mathrm{k}(0.2 \mathrm{~mol} / \mathrm{L})$
[A] $=0.2 \mathrm{~mol} / \mathrm{L}$
From experiment III, we obtain
Rate $=0.2 / \mathrm{min} \times 0.4 \mathrm{~mol} / \mathrm{L}$
$=0.08 \mathrm{~mol} / \mathrm{L} / \mathrm{min}$
From experiment IV, we obtain
$2.0 \times 10^{02} \mathrm{~mol} / \mathrm{L} / \mathrm{min}=0.2 / \min [\mathrm{A}]$
$[\mathrm{A}]=0.1 \mathrm{~mol} / \mathrm{L}$

Question:13 Calculate the half - life of a first order reaction from their rate constants given below:
i.) $200 \mathrm{~s}^{-1}$
ii.) $\quad 2 \mathbf{~ m i n}^{-1}$
iii.) 4 years $^{-1}$

Answer:
i.) Half life , $\mathrm{t}=0.693 / \mathrm{k}=0.693 / 200 \mathrm{~s}^{-1}$

$$
=0.346 \times 10^{-2}=3.46 \times 10^{-3} \mathrm{~s}
$$

ii.) Half life, $\mathrm{t}_{1 / 2}=0.693 / \mathrm{k}=0.693 / 2 / \mathrm{min}$

$$
=0.346 \mathrm{~min}
$$

iii.) Half - life, $\mathrm{t}_{1 / 2}=0.693 / \mathrm{k}=0.693 /$ years $=0.173$ years.

Question: 14 The experimental data for decomposition of N 2 O 5
$[2 \mathrm{~N} 2 \mathrm{O} 5 \rightarrow 4 \mathrm{NO} 2+\mathrm{O} 2]$
In gas phase at 318 K are given below:

t/s	0	400	800	1200	1600	2000	2400	2800	3200
$10^{2} \mathrm{x}$	1.63	1.36	1.14	0.93	0.78	0.64	0.53	0.43	0.35
$\text { [} \mathrm{N} 2 \mathrm{O} 5] / \mathrm{mol}$ $/ \mathbf{L}$									

i.) Plot [N2O5] against t.
ii.) Ii.) Find the half-life period for the reaction.
iii.) Draw a graph between lof[N2O5] and t.
iv.) What is the rate law?
v.) Calculate the rate constant.
vi.) Calculate the half-life period from k and compare it with (ii).

Answer:

i.)

ii.) Time corresponding to the concentration, $1.630 \times 10^{-2} / 2 \mathrm{~mol} / \mathrm{L}=0.815 \times 10^{-2} \mathrm{~mol} / \mathrm{L}$ is the half life

From the graph, the half life is obtained as 1440 s.
iii.)

$\mathrm{t}(\mathrm{s})$	$10^{2} \mathrm{x}[\mathrm{N} 2 \mathrm{O} 5] / \mathrm{mol} / \mathrm{L}$	Log[N2O5]
0	1.63	-1.79
400	1.36	-1.87
800	1.14	-1.94
1200	0.93	-2.03
1600	0.78	-2.11
2000	0.64	-2.19
2400	0.53	-2.28
2800	0.43	-2.37
3200	0.35	-2.46

iv.) The given reaction is of first order as the plot, $\log [\mathrm{N} 2 \mathrm{O} 5] \mathrm{v} / \mathrm{s} \mathrm{t}$, is a straight line.

Therefore, the rate law of the reaction is
Rate $=\mathrm{k}[\mathrm{N} 2 \mathrm{O} 5]$
v.) From, the plot [N2O5] v/s t, we obtain

Slope $=2.46-(-1.79) / 3200-0$
$=-0.67 / 3200$
Again, slope of the line of the plot $\log [\mathrm{N} 2 \mathrm{O} 5] \mathrm{v} / \mathrm{s} \mathrm{t}$, is given $\mathrm{by}=\mathrm{k} / 2.303$
Therefore, we obtain, $-\mathrm{k} / 2.303=0.67 / 3200$
$=4.82 \times 10^{-4} \mathrm{~mol} / \mathrm{L} / \mathrm{s}$
vi.) Half - life is given by
$\mathrm{T}_{1 / 2}=0.639 / \mathrm{k}=0.693 / 4.82 \times 10^{-4} \mathrm{~s}$
$=1.438 \times 10^{3} \mathrm{~s}$
$=1438 \mathrm{~s}$
The value of $t_{1 / 2}$ calculated from the value of k is very close to that obtained from graph.

Question:15 The half life for radioactive decay of ${ }^{14} \mathrm{C}$ is 5730 years. An archeological containing wood had only 80% of ${ }^{14} \mathrm{C}$ found in a living tree. Estimate the age of the sample.
Answer:
Radioactive decay follows first order kinetics. Therefore, decay constant
$\lambda=0.693 / \mathrm{t}_{1 / 2}$
$=0.693 / 5730 /$ years
$\mathrm{t}=2.303 / \lambda \log [\mathrm{R}]_{d}[\mathrm{R}]$
$\mathrm{t}=2.303 \times 5730 / 0.693 \log 100 / 80$
$=1845$ years
Hence, the age of the sample is 1845 years.

Question:16 The rate constant for a first order reaction is $\mathbf{6 0} / \mathrm{s}$. How much time will it take to reduce the initial concentration of the reactant to its $1 / 6^{\text {th }}$ value?

Answer:
It is known that, $\mathrm{t}=2.303 / \mathrm{k} \log [\mathrm{R}]_{0} /[\mathrm{R}]$
$=2.303 / 60 / \mathrm{s} \log 1 / 1$
$=4.62 \times 10^{-2} \mathrm{~s}$ (appox0
Hence, the required time is $4.62 \times 10^{-2} \mathrm{~s}$.

Question:17 During nuclear explosion one of the products is ${ }^{90} \mathrm{Sr}$ with half - life of
28.1 years. If $1 u_{\mathrm{g}}$ of ${ }^{90} \mathrm{Sr}$ was absorbed in the bones of a newly born baby instead of calcium, how much of it will remain after $\mathbf{1 0}$ years and $\mathbf{6 0}$ years if it is not lost metabolically.

Answer:
$\mathrm{K}=0.693 / \mathrm{t}_{1 / 2}=0.693 / 28.1 / \mathrm{y}$
Here,
It is known that
$\mathrm{T}=0.303 / \mathrm{kl} \log [\mathrm{R}]_{0} /[\mathrm{R}]$
$10=0.303 \times 28.1 / 0.693 \log 1 /[R]$
$10=\log [R]=10 \times 0.303 / 2.303 \times 28.1$
$[R]=\operatorname{anti} \log (-0.1071)$
$=0.7814 \mathrm{ug}$
Therefore, 0.7814 ug of ${ }^{90} \mathrm{Sr}$ will remain after 10 years
Again, $\mathrm{t}=2.303 / \mathrm{k} \log [\mathrm{R}]_{0} /[\mathrm{R}]$
$=60=2.303 \times 28.1 / 0.693 \log 1 /[R]$
$=[R]=\operatorname{antilog}(-0.6425)$
$=0.2278 \mathrm{ug}$
Therefore, 0.2278 ug of ${ }^{90} \mathrm{Sr}$ will remain after 60 years.

Quiestion:18 For a first order reaction, show that time required for $\mathbf{9 9 \%}$ completion is twice the time required for the completion of $\mathbf{9 0 \%}$ of reaction.
Answer:
For a first order reaction, the time required for 99% completion is
$\mathrm{t} 1=2.303 / \mathrm{k} \log 100 / 100-99$
$=2.303 / \mathrm{k} \log 100$
$=2 \times 2.303 / \mathrm{k}$
For a first order reaction, the time required for 90% completion is
$\mathrm{t} 2=2.303 / \mathrm{k} \log 100 / 100-99$
2.303/k $\log 10$
$=2.303 / \mathrm{k}$
Therefore, $\mathrm{t} 1=2 \mathrm{t} 2$
Hence, the time required for 99% completion of a first order reaction is twice the time required for the completion of 90% of the reaction.

Question:19 A first order reaction takes 40 min for $\mathbf{3 0 \%}$ decomposition. Calculate
$t_{1 / 2}$.
Answer:
For a first order reaction ,
$\mathrm{T}=2.303 / \mathrm{k} \log [\mathrm{R}]_{0} /[\mathrm{R}]$
$\mathrm{K}=2.303 / 40 \mathrm{~min} \log 100 / 100-30$
2.303/40 min log $10 / 7$
$=8.918 \times 10^{-3} \mathrm{~min}^{-1}$
Therefore, $\mathrm{t}_{1 / 2}$ of the decomposition reaction is
$\mathrm{T}_{1 / 2}=0.693 / \mathrm{k}=0.693 \mathrm{~min} / 8.918 \times 10^{-3}$
$=77.7 \mathrm{~min}$.

Question:20 For the decomposition of azoisopropane to hexane and nitrogen at 543
K , the following data are obtained.

T (sec)	P(mm of Hg)
0	35.0
360	54.0
720	63.0

Calculate the rate constant.

Answer:
The decomposition of azoisopropane to hexane and nitrogen at 543 K is represented by the following equation.
$(\mathrm{CH} 3) 2 \mathrm{CHN}=\mathrm{NCH}(\mathrm{CH} 3) 2(\mathrm{~g}) \rightarrow \mathrm{N} 2(\mathrm{~g})+\mathrm{C} 6 \mathrm{H} 14(\mathrm{~g})$
At $=0 \mathrm{P}_{0} \quad 0 \quad 0$
At $t=t P_{0}-P \quad p \quad p$

After time, t , total pressure, $\mathrm{Pt}=\left(\mathrm{P}^{\mathrm{o}}-\mathrm{p}\right)+\mathrm{p}+\mathrm{p}$
$\Rightarrow \mathrm{Pt}=\left(\mathrm{P}^{\mathrm{o}}+\mathrm{p}\right)$
$\Rightarrow \mathrm{p}=\mathrm{Pt}-\mathrm{P}^{\mathrm{o}}$
Therefore, $\mathrm{P}^{\mathrm{o}}-\mathrm{p}=\mathrm{P}^{\mathrm{o}}-\mathrm{Pt}-\mathrm{P}^{\mathrm{o}}$
$=2 \mathrm{P}^{\mathrm{o}}-\mathrm{Pt}$
For a first order reaction,
$\mathrm{k}=2.303 / \mathrm{t} \log \mathrm{P}^{\mathrm{o}} / \mathrm{P}^{\mathrm{o}}-\mathrm{p}$
$=2.303 / \mathrm{t} \log \mathrm{P}^{\mathrm{o}} / 2 \mathrm{P}^{\mathrm{o}}-\mathrm{Pt}$
When $\mathrm{t}=360 \mathrm{~s}, \mathrm{k}=2.303 / 360 \mathrm{~s} \log 35.0 / 2 \times 35.0-54.0$
$=2.175 \times 10^{-3} \mathrm{~s}^{-1}$
When $\mathrm{t}=720 \mathrm{~s}, \mathrm{k}=2.303 / 720 \mathrm{~s} \log 35.0 / 2 \times 35.0-63.0$
$=2.235 \times 10^{-3} \mathrm{~s}^{-1}$
Hence, the average value of rate constant is
$\mathrm{k}=\left(2.175 \times 10^{-3}+2.235 \times 10^{-3}\right) / 2 \mathrm{~s}^{-1}$
$=2.21 \times 10^{-3} \mathrm{~s}^{-1}$

Question:21 The following data were obtained during the first order thermal decomposition of SO 2 Cl 2 at a constant volume.
$\mathrm{SO} 2 \mathrm{Cl} 2(\mathrm{~g}) \rightarrow \mathrm{SO} 2(\mathrm{~g})+\mathrm{Cl} 2(\mathrm{~g})$

Experiment	Time $/ \mathrm{s}^{-1}$	Total pressure $/ \mathrm{atm}$
1	0	0.5
2	100	0.6

Calculate the rate of the reaction when total pressure is 0.63 atm .
Answer:
The thermal decomposition of SO 2 Cl 2 at a constant volume is represented by the following equation.

Att $=0 \quad \mathrm{P}_{0} \quad 0 \quad 0$
At, $\mathrm{t}=\mathrm{t}$
$\mathrm{P}_{0}-\mathrm{p}$
p p

After time, t , total pressure, $\mathrm{Pt}=\left(\mathrm{P}^{\mathrm{o}}-\mathrm{p}\right)+\mathrm{p}+\mathrm{p}$
$\Rightarrow \mathrm{Pt}=\left(\mathrm{P}^{\mathrm{o}}+\mathrm{p}\right)$
$\Rightarrow \mathrm{p}=\mathrm{Pt}-\mathrm{P}^{\mathrm{o}}$
Therefore, $\mathrm{P}^{\mathrm{o}}-\mathrm{p}=\mathrm{P}^{\mathrm{o}}-\mathrm{Pt}-\mathrm{P}^{\mathrm{o}}$
$=2 \mathrm{P}^{\mathrm{o}}-\mathrm{Pt}$
For a first order reaction,
$\mathrm{k}=2.303 / \mathrm{t} \log \mathrm{P}^{\mathrm{o}} / \mathrm{P}^{\mathrm{o}}-\mathrm{p}$
$=2.303 / \mathrm{t}$ Log $\mathrm{P}^{\mathrm{o}} / 2 \mathrm{P}^{\mathrm{o}}-\mathrm{Pt}$
When $\mathrm{t}=100 \mathrm{~s}$,
$\mathrm{k}=2.303 / 100 \mathrm{~s} \log 0.5 / 2 \mathrm{x} 0.5-0.6$
$=2.231 \times 10^{-3} \mathrm{~s}^{-1}$
When $\mathrm{Pt}=0.65 \mathrm{~atm}$,
$\mathrm{P}^{0}+\mathrm{p}=0.65$
$\Rightarrow \mathrm{p}=0.65-\mathrm{P}^{0}$
$=0.65-0.5$
$=0.15 \mathrm{~atm}$
Therefore, when the total pressure is 0.65 atm , pressure of SOCl 2 is
pSOCL2 $=\mathrm{P}^{0}-\mathrm{p}$
$=0.5-0.15$
$=0.35 \mathrm{~atm}$
Therefore, the rate of equation, when total pressure is 0.65 atm , is given by,
Rate $=\mathrm{k}(\mathrm{pSOCL} 2)$
$=\left(2.23 \times 10^{-3} \mathrm{~s}^{-1}\right)(0.35 \mathrm{~atm})$
$=7.8 \times 10^{-4} \mathrm{~atm} \mathrm{~s}^{-1}$

Question:22 The rate constant for the decomposition of N 2 O 5 at various temperatures is given below:

$\mathrm{T} /{ }^{0} \mathrm{C}$	0	20	40	60	80
$10^{5} \times \mathrm{k} / \mathrm{s}^{-1}$	0.0787	1.70	25.7	178	2140

Draw a graph between $\ln k$ and $1 / T$ and calculate the values of A and E_{a}. predict the rate constant at 30° and $50^{\circ} \mathrm{C}$.

Answer:
For the given data:

$\mathrm{T} /{ }^{0} \mathrm{C}$	0	20	40	60	80
$\mathrm{~T} / \mathrm{K}$	273	293	313	333	353
$1 / \mathrm{T} / \mathrm{k}^{-1}$	3.66×10^{-3}	3.41×10^{-3}	3.19×10^{-3}	3.0×10^{-3}	2.83×10^{-3}
$10^{5} \times \mathrm{k} / \mathrm{s}^{-1}$	0.0787	4.075	25.7	178	2140
$\ln \mathrm{k}$	-7.147	-4.075	-1.359	-0.577	3.063

$$
10^{3} \times \frac{1}{T}\left(\mathrm{~K}^{-1}\right) \longrightarrow
$$

Slop of the line,
$y 1-y 2 / x 2-x 1=-12.301 K$
According to Arrhenius equation,
Slope $=-E_{a} / R$
$\mathrm{E}_{\mathrm{a}}=$-slope $\times \mathrm{R}$
$=-(-12.301 \mathrm{~K}) \times\left(8.314 \mathrm{JK}^{-12} / \mathrm{mol}\right)$
$=102.27 \mathrm{KJ} / \mathrm{mol}$
Again,
$\ln \mathrm{k}=\ln \mathrm{A} . \mathrm{E}_{\mathrm{a}} / \mathrm{ET}$
When, $T=273 \mathrm{~K}$
$\ln \mathrm{k}=-7.147$
Then, $\ln \mathrm{A}=-7.147+102.27 \times 10^{3} / 8.314 \times 273=37.911$
Therefore, $\mathrm{A}=2.91 \times 10^{6}$
When $\mathrm{T}=30+273 \mathrm{~K}=303 \mathrm{~K}$
$1 / \mathrm{T}=0.0033 \mathrm{~K}=3.3 \times 10^{-3} \mathrm{~K}$
Then, at $1 / \mathrm{T}=3.3 \times 10^{-3}$
$\ln \mathrm{k}=-2.8$
Therefore, $\mathrm{k}=6.08 \times 10^{-2} / \mathrm{s}$
Again, when $T=50+273 \mathrm{~K}=323 \mathrm{~K}$
$1 / \mathrm{T}=0.0031 \mathrm{~K} 3.1 \times 10^{-3} \mathrm{~K}$
$\ln \mathrm{k}=-0.5$
therefore, $\mathrm{k}=0.607 / \mathrm{s}$

Question:23 The rate constant for the decomposition of hydrocarbons is $2.418 \times 10^{-5} /$ s at 546 K . if the energy of activation is $179.9 \mathrm{~kJ} / \mathrm{mol}$, what will be the value of preexponential factor.

Answer:
$\mathrm{k}=2.418 \times 10-5 \mathrm{~s}-1$
$\mathrm{T}=546 \mathrm{~K}$
$\mathrm{Ea}=179.9 \mathrm{~kJ} \mathrm{~mol}-1=179.9 \times 103 \mathrm{~J} \mathrm{~mol}-1$

According to the Arrhenius equation,
$\mathrm{k}=\mathrm{A} \mathrm{e}^{-\mathrm{Ea} / \mathrm{RT}}$
$\ln \mathrm{k}=\ln \mathrm{A}-\mathrm{Ea} / \mathrm{RT}$
$\log \mathrm{k}=\log \mathrm{A}-\mathrm{Ea} / 2.303 \mathrm{RT}$
$\log \mathrm{A}=\log \mathrm{k}+\mathrm{Ea} / 2.303 \mathrm{RT}$
$=(0.3835-5)+17.2082$
$=12.5017$
Therefore, $\mathrm{A}=\operatorname{antilog}$ (12.5917)
$=3.9 \times 10^{12} \mathrm{~s}^{-1}$ (approximately)

Question:24 Consider a certain reaction $\mathrm{A} \rightarrow$ Products with $\mathrm{k}=\mathbf{2 . 0 \times 1 0} \mathbf{1 0} / \mathrm{s}$.
Calculate the concentration of A remaining after 100 s if the initial concentration of A is $1.0 \mathrm{~mol} / \mathrm{L}$.

Answer:
$\mathrm{k}=2.0 \times 10^{-2} \mathrm{~s}^{-1}$
$\mathrm{T}=100 \mathrm{~s}$
$[\mathrm{A}]^{0}=1.0 \mathrm{molL}^{-1}$
Since the unit of $\mathrm{k}^{\text {is }} \mathrm{s}^{-1}$, the given reaction is a first order reaction.
Therefore, $\mathrm{k}=2.303 / \mathrm{t} \log [\mathrm{A}]^{\circ} /[\mathrm{A}]$
$\Rightarrow 2.0 \times 10^{-2} \mathrm{~s}^{-1}=2.303 / 100 \mathrm{~s} \log 1.0 /[\mathrm{A}]$
$\Rightarrow 2.0 \times 10^{-2} \mathrm{~s}^{-1}=2.303 / 100 \mathrm{~s}(-\log [\mathrm{A}])$
$\Rightarrow-\log [\mathrm{A}]=-\left(2.0 \times 10^{-2} \times 100\right) / 2.303$
$\Rightarrow[\mathrm{A}]=\operatorname{antilog}\left[-\left(2.0 \times 10^{-2} \times 100\right) / 2.303\right]$
$=0.135 \mathrm{~mol} \mathrm{~L}^{-1}$ (approximately)
Hence, the remaining concentration of A is $0.135 \mathrm{~mol} \mathrm{~L}^{-1}$.

Question:25 Sucrose decomposes in acid solution into glucose and fructose according to the first order rate law, with $\mathbf{t}_{1 / 2}=\mathbf{3 . 0 0}$ hours. What fraction of sample of sucrose remains after 8 hours?

Answer:
For a first order reaction,
$\mathrm{k}=2.303 / \mathrm{t} \log [\mathrm{R}]^{\circ} /[\mathrm{R}]$
It is given that, $\mathrm{t} 1 / 2=3.00$ hours
Therefore, $\mathrm{k}=0.693 / \mathrm{t} 1 / 2$
$=0.693 / 3 \mathrm{~h}^{-1}$
$=0.231 \mathrm{~h}^{-1}$
Then, $0.231 \mathrm{~h}^{-1}=2.303 / 8 \mathrm{~h} \log [\mathrm{R}]^{\circ} /[\mathrm{R}]$
$\log [R]_{0}[R]=0.231 \mathrm{~h}^{-1} \mathrm{x} 8 \mathrm{~h} / 2.303$
$[\mathrm{R}]_{0} /[\mathrm{R}]=\operatorname{antilog}(0.8024)$
$[R]_{0} /[R]=6.3445$
$[R] /[R]_{0}=0.1576$ (approx.)
$=0.158$
Hence, the fraction of sample of sucrose that remains after 8 hours is 0.158 .

Question:26 The decomposition of hydrocarbon follows the equation
$\mathrm{K}=(\mathbf{4 . 5 \times 1 0} \times 1 / \mathrm{s}) \mathrm{e}^{-28000 \mathrm{~K} / \mathrm{T}}$
Calculate $\mathbf{E}_{\mathbf{a}}$.
Answer:
The given equation is
$\mathrm{k}=\left(4.5 \times 10^{11} \mathrm{~s}^{-1}\right) \mathrm{e}^{-28000} / \mathrm{KT} \quad \ldots$ (i)
Arrhenius equation is given by,
$\mathrm{k}=\mathrm{Ae}^{-\mathrm{Ea} / \mathrm{RT}}$
From equation (i) and (ii), we obtain
$\mathrm{Ea} / \mathrm{RT}=28000 \mathrm{~K} / \mathrm{T}$
$\Rightarrow \mathrm{Ea}=\mathrm{R} \times 28000 \mathrm{~K}$
$=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \times 28000 \mathrm{~K}$
$=232792 \mathrm{~J} \mathrm{~mol}^{-1}$
$=232.792 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Question:27 The rate constant for the first order decomposition of $\mathbf{H 2 O 2}$ is given by the following equation:
Logk $=14.34-1.25 \times 10^{4} \mathrm{~K} / \mathrm{T}$
Calculate E_{a} fir this reaction and at what temperature will its half-period be 256 minutes?

Answer:
Arrhenius equation is given by,
$\mathrm{k}=\mathrm{Ae}^{-\mathrm{Ea} / \mathrm{RT}}$
\Rightarrow In $\mathrm{k}=\operatorname{In} \mathrm{A}-\mathrm{Ea} / \mathrm{RT}$
\Rightarrow In $\mathrm{k}=\log \mathrm{A}-\mathrm{Ea} / \mathrm{RT}$
$\Rightarrow \log \mathrm{k}=\log \mathrm{A}-\mathrm{Ea} / 2.303 \mathrm{RT}$
The given equation is
$\log \mathrm{k}=14.34-1.25104 \mathrm{~K} / \mathrm{T}$
(ii)

From equation (i) and (ii), we obtain
$\mathrm{Ea} / 2.303 \mathrm{RT}=1.25104 \mathrm{~K} / \mathrm{T}$
$\Rightarrow \mathrm{Ea}=1.25 \times 104 \mathrm{~K} \times 2.303 \times \mathrm{R}$
$=1.25 \times 104 \mathrm{~K} \times 2.303 \times 8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
$=239339.3 \mathrm{~J} \mathrm{~mol}^{-1}$ (approximately)
$=239.34 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Also, when $\mathrm{t} 1 / 2=256$ minutes,
$\mathrm{k}=0.693 / \mathrm{tl} / 2$
$=0.693 / 256$
$=2.707 \times 10^{-3} \mathrm{~min}^{-1}$
$=4.51 \times 10^{-5} \mathrm{~s}^{-1}$
It is also given that, $\log \mathrm{k}=14.34-1.25 \times 104 \mathrm{~K} / \mathrm{T}$
$\log \left(4.51 \times 10^{-3} 0=14.34-1.25 \times 10^{4} \mathrm{~K} / \mathrm{T}\right.$
$1.25 \times 10^{4} \mathrm{~K} / \mathrm{T}=18.686$
$\mathrm{T}=1.25 \times 10^{4} \mathrm{~K} / 18.686$
668.95 K
$=669$ (approx.)

Question:28 The decomposition of A into product has value of k as $4.5 \times 10^{3} / \mathrm{s}$ at $10^{\circ} \mathrm{C}$ and the energy of activation $60 \mathrm{~kJ} / \mathrm{mol}$. At what temperature would k be 1.5 x $10^{4} / \mathrm{s}$?

Answer:
From Arrhenious equation, we obtain
Log K2/K1 = Ea /2.303R (T2 - T1 / T1T2)
Also, $\mathrm{k} 1=4.5 \times 10^{3} / \mathrm{s}$
$\mathrm{T} 1=273+10=283 \mathrm{~K}$
$\mathrm{k} 2=1.5 \times 10^{4} / \mathrm{s}$
$\mathrm{Ea}=60 \mathrm{~kJ} / \mathrm{mol}=6.0 \times 10^{4} \mathrm{~J} / \mathrm{mol}$
Then $\log \frac{1.5 \times 10^{4}}{4.5 \times 10^{3}}=\frac{6.0 \times 10^{4} \mathrm{~J} / \mathrm{mol}}{2.303 \times 8.314 \mathrm{~J} / \mathrm{K} / \mathrm{mol}} \frac{(\mathrm{T} 2-283)}{283 \mathrm{~T} 2}$
$=0.5229 \times 283 \mathrm{~T} 2=\mathrm{T} 2-283$
3133.627
$0.9528 \mathrm{~T} 2=283$
$\mathrm{T} 2=297.019 \mathrm{~K}$
2967 K
$=24^{\circ} \mathrm{C}$

Question :29 The time required for $\mathbf{1 0 \%}$ completion of a first order reaction at $\mathbf{2 9 8 K}$ is equal to that required for its $\mathbf{2 5 \%}$ completion at $\mathbf{3 0 8 K}$. if the value of A is $\mathbf{4 \times 1 0} \mathbf{1 0} / \mathbf{s}$. Calculate k at 318 K and E_{a}.
Answer:
For a first order reaction,
$\mathrm{t}=2.303 / \mathrm{k} \log \mathrm{a} / \mathrm{a}-\mathrm{x}$
At 298 K ,
$\mathrm{t}=2.303 / \mathrm{k} \log 100 / 90$
$=0.1054 / \mathrm{k}$
At 308 K ,
$\mathrm{t}^{\prime}=2.303 / \mathrm{k}^{\prime} \log 100 / 75$
$=2.2877 / \mathrm{k}^{\prime}$
According to the question,
$\mathrm{t}=\mathrm{t}^{\prime}$
$\Rightarrow 0.1054 / \mathrm{k}=2.2877 / \mathrm{k}^{\prime}$
$\Rightarrow \mathrm{k}^{\prime} / \mathrm{k}=2.7296$
From Arrhenius equation,we obtain
$\log \mathrm{k} / \mathrm{k}=\mathrm{Ea} / 2.303 \mathrm{R}\left(\mathrm{T}^{\prime}-\mathrm{T} / \mathrm{TT}{ }^{\prime}\right)$
$\log (2.7296)=\mathrm{Ea} / 2.303 \times 8.314(308-298 / 298 \times 308)$
$\mathrm{Ea}=2.303 \times 8.314 \times 298 \times 308 \times \log (2.7296) / 308-298$
$=76640.096 \mathrm{~J} / \mathrm{mol}$
$76.64 \mathrm{~kJ} / \mathrm{mol}$
To calculate k at 318 K ,
It is given that, $\mathrm{A}=4 \times 1010 \mathrm{~s}-1, \mathrm{~T}=318 \mathrm{~K}$
Again, from Arrhenius equation, we obtain
Therefore, $\mathrm{k}=$ Antilog (-1.9855)
$=1.034 \times 10^{-2} \mathrm{~s}^{-1}$

Question:30 The rate of a reaction quadraples when the temperature changes from 293K to 313K. Calculate the energy of activation of the reaction assuming theat it does not change with temperature.

Answer:
For Arrhenius equation, we obtain
$\log \log \mathrm{k} 2 / \mathrm{k} 1=\mathrm{Ea} / 2.303$ (T2 - T1/ T2 T1)
It is given that $\mathrm{k} 2=4 \mathrm{k} 1$
$\mathrm{T} 1=293 \mathrm{~K}$
$\mathrm{T} 2=313 \mathrm{~K}$
Therefore, $\log 4 \mathrm{k} 1 / \mathrm{k} 1=\mathrm{Ea} / 2.303 \times 8.314(313-293 / 313 \times 293)$
$\mathrm{Ea}=0.6021 \times 2.303 \times 8.314 \times 293 \times 313 / 20$
$=52.86 \mathrm{~kJ} / \mathrm{mol}$
Hence, the required energy of activation is $52.86 \mathrm{~kJ} / \mathrm{mol}$.

