Hall Ticket Number

Q.B.No.	3	5	4	3	2	1

Booklet Code :

Marks : 100 Time : 120 minutes

Signature of the Candidate

Signature of the Invigilator

INSTRUCTIONS TO THE CANDIDATE

3PM2

(Read the Instructions carefully before Answering)

- 1. Separate Optical Mark Reader (OMR) Answer Sheet is supplied to you along with Question Paper Booklet. Please read and follow the instructions on the OMR Answer Sheet for marking the responses and the required data.
- 2. The candidate should ensure that the Booklet Code printed on OMR Answer Sheet and Booklet Code supplied are same.
- 3. Immediately on opening the Question Paper Booklet by tearing off the paper seal, please check for (i) The same booklet code (A/B/C/D) on each page, (ii) Serial Number of the questions (1-100), (iii) The number of pages and (iv) Correct Printing. In case of any defect, please report to the invigilator and ask for replacement of booklet with same code within five minutes from the commencement of the test.
- 4. Electronic gadgets like Cell Phone, Calculator, Watches and Mathematical/Log Tables are not permitted into the examination hall.
- 5. **There will be** ¹/₄ **negative mark for every wrong answer.** If the response to the question is left blank without answering, there will be no penalty of negative mark for that question.
- 6. Using Blue/Black ball point pen to darken the appropriate circles of (1), (2), (3) or (4) in the OMR Answer Sheet corresponding to correct or the most appropriate answer to the concerned question number in the sheet. Darkening of more than one circle against any question automatically gets invalidated and will be treated as wrong answer.
- 7. Change of an answer is NOT allowed.
- 8. Rough work should be done only in the space provided in the Question Paper Booklet.
- 9. Return the OMR Answer Sheet and Question Paper Booklet to the invigilator before leaving the examination hall. Failure to return the OMR sheet and Question Paper Booklet is liable for criminal action.

This Booklet consists of 20 Pages for 100 Questions + 3 Pages of Rough Work + 1 Title Page i.e. Total 24 Pages.

SPACE FOR ROUGH WORK

Booklet Code

Marks: 100

Instructions :

- i) Each question carries *one* mark and ¹/₄ negative mark for every wrong answer.
- Choose the correct or most appropriate answer from the given options to the following questions and darken, with Blue/Black Ball Point Pen, the corresponding digit 1, 2, 3 or 4 in the circle pertaining to the question number concerned in the OMR Answer Sheet, separately supplied to you.

1. If 3, 5, x (x > 5); y, 3, 7 (0 < y < 3); 1, z, 5 (1 < z < 5) are sides of three right angled triangles, and LCM of x^2 , y^2 , z^2 is $p_1^{\alpha} p_2^{\beta} p_3^{\gamma} p_4^{\delta}$, where p_1 , p_2 , p_3 , p_4 are primes then $(p_1 + p_2 + p_3 + p_4)(\alpha + \beta + \gamma + \delta) =$ (1) 162 (2) 2040 (3) 27 (4) 6

2. The rationalising factor of
$$(\sqrt[6]{a} + \sqrt[6]{b})$$
 is

(1)
$$\left(\sqrt[6]{a} - \sqrt[6]{b}\right)\left(\sqrt[3]{a} + \sqrt[3]{b}\right)$$

(2) $\left(\sqrt[3]{a} - \sqrt[3]{b}\right)\left(\sqrt{a} - \sqrt{b}\right)$
(3) $\left(\sqrt[6]{a} - \sqrt[6]{b}\right)\left(\sqrt{a} + \sqrt{b}\right)$
(4) $\left(\sqrt[6]{a} - \sqrt[6]{b}\right)\left(\sqrt[3]{a^2} + \sqrt[3]{ab} + \sqrt[3]{b^2}\right)$

3. $1.\overline{27} + 0.\overline{94} =$

- (1) $2.\overline{21}$ (2) $2.\overline{2}$ (3) $1.\overline{2794}$ (4) $\frac{219}{33}$
- 4. For three numbers *a*, *b*, *c* if
 - a) LCM of *a*, *b*, *c* is 45
 - b) HCF of *a*, *b*, *c* is 3
 - c) LCMs of two different numbers selected out of the three given numbers are 9, 15 and 45
 - d) Product of the numbers b and c is 27.
 - Then a =
 - (1) 5 (2) 45 (3) 15 (4) 30
- 5. *a* and *b* are two positive integers and a > b. If these exist positive integers *c*, *d*, *e*, *f* and *g* such that

a = bc + d, (d < b), b = de + f, (f < d) and d = fg, then the HCF of a, b is (1) e (2) d (3) g (4) f

A number obtained after subtracting x from 2035, when divided by 9, 10 and 15 gives the 6. remainder 5 in each case. Then the smallest possible x is (1) 50 (3) 150 (4) 220 55 (2) $x = \sqrt{7} - \sqrt{5}, v = \sqrt{5} - \sqrt{3}$ 7. If $z = \sqrt{11} - \sqrt{9}$ and $t = \sqrt{13} - \sqrt{11}$ then (1)y > t > x(2)z > t > x(3) x > z > t $(4) \quad t > z > y > x$ 8. The first non zero digit in the number $12 \times 18 \times 55 \times 40 \times 105$ appears at the (1)Tens place (2)Hundreds place (3) Thousands place Ten thousands place (4) 9. A company manufactures two types of cube shapped tins with side 4 and 18. In a carton, $10n(n \in N)$ number of similar size tins are packed. The smallest size of the carton that can hold either of the type of the tins without leaving any gap is (1) $120 \times 210 \times 320$ (2) $30 \times 210 \times 1280$ $360 \times 720 \times 1080$ (3) $360 \times 360 \times 360$ (4)10. Match the following <u>List - A</u> <u>List - B</u> 2.4512 a) Their HCF need not be equal to 1 I) Co-prime numbers LCM is the product of those numbers b) II) c) **Composite numbers** III) Conjugate surds $(\sqrt[3]{3}+2\sqrt{5})(\sqrt[3]{3}-2\sqrt{5})$ d) IV) is a Rational number is an Irrational number V) Then the correct match is (a) (b) (c) (d) (1)V Ι Π Ш (2)V Ι Π IV V (3) IV II Ш V (4) IV Π Ι

Booklet Code

11. If the area bounded by the graph of $y = \sin x$ over $[0, \pi]$ and *x*-axis is approximated by 4 equally spaced rectangles such that the middle most rectangles have y = 1 as a common side, then the best estimate of the area containing actual area among the following is

(1)
$$\left(\frac{1+\sqrt{2}}{4}\right)\pi$$
 (2) $\frac{\pi}{4}$
(3) $\left(\frac{2+\sqrt{2}}{4}\right)\pi$ (4) $\frac{3}{4}\pi$

- 12. In a progression, n^{th} term ' f_n ' follows the pattern $f_n = f_{n-1} + f_{n-2}, \forall n \ge 2,$ $f_0 = f_1 = 1$ Then $\sum_{j=0}^{2n-1} f_j$ (1) $f_{2n} - 1$ (2) $f_{2n+1} - 1$ (3) $f_{2n-1} - 1$ (4) $f_{2n+1} - f_{2n-1}$
- 13. If the sum of the continued fraction

$$2 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2 + \dots}}}}}$$

is denoted by *e*, then

(1) $e = \infty$ (2) e = 1(3) $e = 1 + \sqrt{2}$ (4) $e = \frac{1 + \sqrt{5}}{2}$

14. Let
$$\alpha = 1 + \frac{1}{2^2} + \frac{1}{2^3} + \frac{1}{2^4} + \dots + \frac{1}{2^n} + \dots$$
 and $\beta = \alpha + \frac{1}{2} + \frac{\alpha}{9} + \frac{1}{18} + \frac{\alpha}{81} + \dots \infty$, then
(1) $\alpha = \beta$ (2) $\sqrt{\alpha} = \beta$ (3) $\left|\sqrt{\beta}\right| = \alpha$ (4) $\alpha + \beta < 1$

15. 'x' liters mixture of pure apple juice and water is made by mixing them in the ratio 3:2. 5 liters of water is added to that mixture and found that they are in the ratio 2:3. The number of liters of water to be added insted of 5 liters so as to have the ratio 1:1 is
(1) 3 (2) 1 (3) 2 (4) 4

16. The mean proportional of *b*, *c* and the 4th proportional of *a*, *b*, *c* are equal to 8. If the third proportional of *b*, *c* is 4, then $(a \ b \ c) = (1) \ 2^9 \ (2) \ 2^8 \ (3) \ 2^5 \ (4) \ 2^7$

17. If $x = e^{\pi} - \pi^e$, then (1) x < 0 (2) 0 < x < 1 (3) x > 1 (4) -1 < x < 0

- 18. Which one of the following is false?
 - (1) Sum of finite number of numbers is always finite.
 - (2) Every composite number can be expressed as a product of primes and this factorzation is unique.
 - (3) An Irrational number has non teminating non recurring (repeating) decimal expansion.
 - (4) Sum of infinite number of numbers is always infinite.

19.
$$2 - \frac{1}{3} - \frac{4}{9} - \frac{7}{27} - \dots =$$

(1) $\frac{2}{3}$ (2) $\frac{1}{2}$ (3) $\frac{3}{4}$ (4) $\frac{1}{4}$

20. If S_n denotes sum of first n terms of the progression $\frac{1}{2} - \frac{1}{2^2} + \frac{1}{2^3} - \frac{1}{2^4} + \dots$ then

 $\log \left| \mathbf{S}_{n} - \frac{1}{3} \right| <$ (1) $(n+1)\log_{e}\left(\frac{1}{3}\right)$ (2) $(n+1)\log_{e}\left(\frac{1}{2}\right)$ (3) (n+1)(4) $\log n$

21. A shopkeeper sells an article by offering 10% discount and there by gets a profit of 5%. If he dosenot offer the discount then the percentage profit he gets is

(1) 15	(2) $15\frac{2}{3}$	(3) $15\frac{5}{3}$	(4) $16\frac{2}{3}$
--------	---------------------	---------------------	---------------------

Booklet Code

22. A certain amount of money is given to each of A and B. After 3 years, A paid it back with a simple interest of 10% and B paid it back with 10% compound interest. If the difference of amounts they both paid is Rs. 46.50 then the amount (in Rs.) given to each of them initially, is

(1) 1250 (2) 1500 (3) 1850 (4) 2000

23. The modulus of the complex number
$$\frac{(2+3i)(3-i)}{6+2i}$$
 is

(1)
$$\frac{25}{4}$$
 (2) $\frac{\sqrt{17}}{3}$ (3) $\frac{\sqrt{13}}{2}$ (4) $\frac{14}{\sqrt{10}}$

24. Let $A = \{4n+1 / n \in W\}$ $B = \{4n+3 / n \in W\}$ $C = \{2n / n \in W\}$

(W is set of whole numbers) and consider the following statements :

- I) A, B, C are mutually disjoint.
- II) $A \cup B \cup C = W$

III)
$$A' = C; B' = C$$

Then which of the above statements is/are true

- (1) I and II only (2) I only
- (3) I and III only (4) I, II and III

25. Consider the statements.

- I) If the set of letters needed to spell the word CORRECT is A and the set of letters needed to spell the word RECTOR is B; then n(A) = n(B).
- II) If A and B are not disjoint, then (A B), $A \cap B$ and (B A) are also not disjoint.
- III) If three sets A, B, C are such that $A \cap B = B$, $A \cap C \neq \phi$; $B \cap C = \phi$, then $n(A \cup B \cup C) = n(A) + n(C) n(A \cap C)$.

Which of the above statements is/are false?

- (1) Statement I and II (2) Only statement II
- (3) Only statement III (4) All statements I, II and III

Booklet Code

26. If θ_1 and θ_2 are the amplitudes of two complex numbers z_1 and z_2 satisfying $|z_1 + z_2| = |z_1| + |z_2|$, then $\theta_1 - \theta_2 =$ (1) $\frac{\pi}{2}$ (4) $\frac{\pi}{3}$ (2) 0 (3) $\frac{\pi}{4}$ $\operatorname{Arg}(-\sqrt{7} + \sqrt{21} i) + \operatorname{Arg}(\sqrt{7} + \sqrt{21} i) + \operatorname{Arg}(\sqrt{7} - \sqrt{21} i) =$ 27. (4) $\frac{2\pi}{3}$ (2) $\frac{-\pi}{2}$ (3) 0 (1) 2π A businessman marks the price of an item 30% above the cost price and allows a discount 28. of 12%. The profit the businessman makes on selling that item is (2) $14\frac{2}{5}\%$ (4) $15\frac{1}{2}\%$ (3) 15% (1)18% 29. A sum of Rs. x lent for interest amounts to Rs. 2,24,952 in three years. If the interest is calculated on the amount accumelated at the end of previous year at the rate of 3%, 4% and 5% for each of the 1st, 2nd and 3rd years, then x (in Rs.) = (1)2.00.000 (2)1.90.000 (3)2.05.000 (4)1.95.000 In measuring the sides of a rectangle, one side is taken 5% more and the other 4% less. The 30. percentage error in the area of the rectangle is (1) $\frac{7}{9}$ decrease (2) $\frac{4}{5}$ decrease (4) $\frac{4}{5}$ increase (3) $\frac{8}{9}$ increase The square root of $\frac{3}{2}(x-1) + \sqrt{2x^2 - 7x - 4}$ is 31.

(1) $\frac{1}{\sqrt{2}} \left[\sqrt{2x+1} + \sqrt{x-4} \right]$ (2) $\frac{1}{\sqrt{2}} \left[\sqrt{2x+1} - \sqrt{x-4} \right]$ (3) $\frac{1}{\sqrt{2}} \left[\sqrt{2x-1} + \sqrt{x-4} \right]$ (4) $\frac{1}{\sqrt{2}} \left[\sqrt{2x-1} + \sqrt{x+4} \right]$

Booklet Code

32. By allowing complex coefficients in the factorization of a polynomial of real variable the following factorization is taken $x^3 + y^3 = (x + y)(x + ay)(x + by)$. Then a =

(1)
$$2 + \sqrt{3}i$$
 (2) $\frac{-1 \pm \sqrt{3}i}{2}$
(3) $\frac{\sqrt[2]{3} - i}{2}$ (4) $\frac{1 \pm \sqrt{3}i}{2}$

33. If x_1 and x_2 are roots of $ax^2 + bx + c = 0$, then the equation possessing the roots $\frac{x_1}{x_2}, \frac{x_2}{x_1}$ is

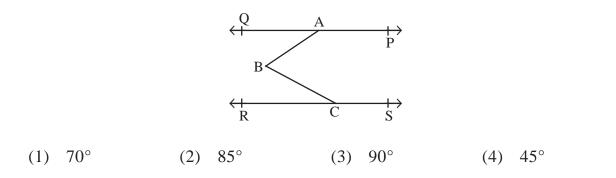
- (1) $acx^2 (b^2 + 2ac)x + ac = 0$
- (2) $acx^2 (b^2 2ac)x ac = 0$
- (3) $acx^2 + (b^2 2ac)x + ac = 0$
- (4) $acx^2 (b^2 2ac)x + ac = 0$
- 34. If $f(x) = \frac{\lambda x^2 7x + 5}{5x^2 7x + \lambda}$ takes real values for any real *x*, then the maximum of the possible values of λ is
 (1) 2
 (2) -12
 (3) 10
 (4) 7
- 35. For |x| < 1, the series expansion of $\sqrt{1+x}$ is given by

(1)
$$1 - x + x^{2} - x^{3} + \dots$$

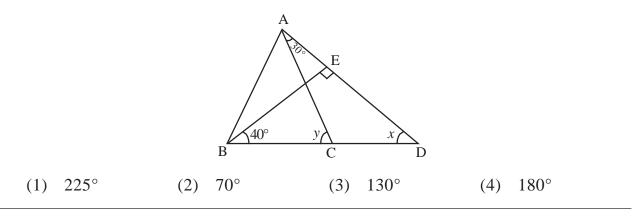
(2) $1 + \frac{1}{2}x - \frac{1}{2 \cdot 4}x^{2} + \frac{1 \cdot 3}{2 \cdot 4 \cdot 6}x^{3} - \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6 \cdot 8}x^{4} + \dots$
(3) $1 - \frac{1}{2}x + \frac{1 \cdot 3}{2 \cdot 4}x^{2} - \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6}x^{3} + \frac{1 \cdot 3 \cdot 5 \cdot 7}{2 \cdot 4 \cdot 6 \cdot 8}x^{4} - \dots$
(4) $1 + \frac{1}{2}x^{2} + \frac{1 \cdot 3}{2 \cdot 4}x^{4} + \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6}x^{4} + \dots$

Booklet Code

36.	292622253127635446		
	(1) 132 (2) -132	(3)	0 (4) ±1
37.	The remainder obtained when $3x^7 - x^6 + (x + 1)$ is 11 then the remainder when it is		
	(1) 121 (2) 11	(3)	0 (4) 21
38.	Suppose $y^2 + z^2 = ayz$, $z^2 + x^2 = bzx$, $x^2 + z^2 = bzx$, $x^2 + z^2 = bzx$, y and z from the above equations is	$y^2 = cx$	xy. The equation obtained by eliminating
	(1) $a^2 + b^2 + c^2 = abc$	· · /	$a^2 + b^2 + c^2 + 4 = abc$
	(3) $a^2 + b^2 + c^2 - 4 = abc$	(4)	$a^2 + b^2 + c^2 = 4abc$
39.	If the solution region of the system of ineq point (α , β), where $\beta \le 0$, then	qualitie	es $x + y \ge 5$, $x - y \le 7$ and $y \le 3$ contains a
	(1) $-7 \le \beta \le 5$	(2)	$-1 \leq \beta \leq 0$
	$(3) -7 \le \beta \le 0$	(4)	No such point exist
40.	If $\text{Log}\left[\frac{\left(x^{2} + \frac{3}{x}\right)}{\left(\sum_{i=-15}^{30} a_{i} x^{i}\right)^{\frac{1}{15}}}\right] = 0$, then $3a_{9} - a_{1}$	₆ =	
	(1) 15_{C_3} (3) $15_{C_{14}}$	(2) (4)	15_{C_6} $C_0 - C_1 + C_2 + \dots - C_{15}$


41. Suppose the sequence of real numbers, $\{x_n\}$, satisfies $x_1 = 1$ and $x_{n+1} = \sqrt{1 + 2x_n}$ for $n \ge 1$. Then the assertion that one may make using the induction hypothesis is

- (2) $x_n < 4 \quad \forall n \ge 1$ (4) $x_n < 2 \quad \forall n \ge 1$ (1) $x_n > 4 \quad \forall n \ge 1$
- (3) $1 < x_n < 2, n \ge 1$

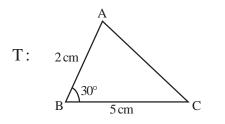

Booklet Code

42. If *a*, *b*, *c* are the roots of the equation $x^3 + p_1x^2 + p_2x + p_3 = 0$, then the equation with the roots a^2 , b^2 , c^2 is

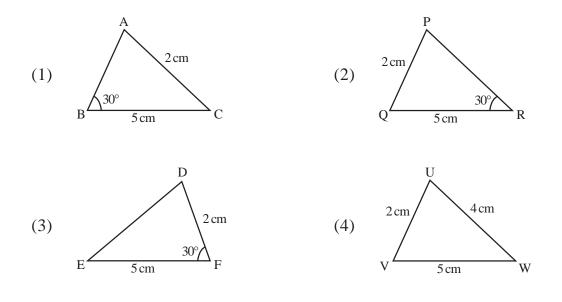
- (1) $y^{3} + (2p_{2} p_{1}^{2})y^{2} + (p_{2}^{2} 2p_{1}p_{3})y p_{3}^{2} = 0$
- (2) $y^3 + (2p_2 p_1^2)y^2 + (p_2 2p_1p_3) + p_3^2 = 0$
- (3) $y^3 (2p_2 p_1^2)y^2 + (p_2^2 2p_1p_2)y p_3^2 = 0$
- (4) $y^3 (2p_2 p_1^2)y^2 + (p_2^2 2p_1p_2)y + p_3^2 = 0$
- 43. The maximum value of 5x + 6y subject to the conditions $x + y \le 10$, $x y \ge 3$, $5x + 4y \le 35$, $x, y \ge 0$ is
 - (1) $\frac{107}{2}$ (2) 65 (3) 60 (4) $\frac{355}{9}$
- 44. In the adjacent figure if PQ//RS, $|PAB| = 135^{\circ}$ and $|BCR| = 40^{\circ}$, then |ABC| =

45. From the adjacent figure |x + |y| =

11 - A

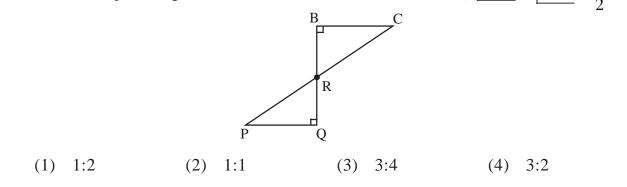

46. Consider the following statement :

S: Two distinct intersecting lines cannot be parallel to the same line.


Which one of the following statement is equivalent statement to S?

- (1) For every line *l* and for every point P not lying on *l*, there exists a unique line *m* passing through P and parallel to *l*.
- (2) For every line l there will be a line intersecting it.
- (3) Through a point P we can draw infinite number of lines.
- (4) Two distinct intersecting lines can be perpendicular to the given line.

47. Consider the triangle (T) given below :



Which one of the following is congruent to T?

Booklet Code

- 49. In $\triangle ABC$, if D is a point on the side BC lying in between B & C such that AD and AC are equal, then AB AD is
 - (1) Positive (2) Zero (3) Negative (4) Equal to AC

50. Consider the following statements :

- A) If 3 sides of one triangle are equal to 3 sides of other triangle, then they are congruent.
- B) Two circles of the same radii are congruent.
- C) Sum of any two sides of a triangle is less than the third side.
- D) In a triangle ABC, if AB = 5, BC = 7 and CA = x and |B| is the greatest angle, then x < 7

Then

- (1) Only (A) and (B) are false (2) Only (B) and (C) are false
- (3) Only (C) and (D) are false (4) Only (D) and (A) are false
- 51. In a parallelogram ABCD, if AC is a diagonal then
 - (1) $\triangle ABC \text{ and } \triangle ABD \text{ are congruent}$ (2) $\triangle ABC \text{ and } \triangle BCD \text{ are congruent}$
 - (3) $\triangle ABC$ and $\triangle ACD$ are congruent (4) $\triangle ACD$ and $\triangle ABD$ are congruent
- 52. In a $\triangle ABC$, AB = AC. P is a point on the side AB such that AD bisects |PAC| and CD is parallel to AB, then
 - (1) ABCD is a square
 - (2) ABCD is a parallelogram
 - (3) ABCD is a rhombus
 - (4) ABCD is a quadrilateral other than a square, a parallelogram and a rhombus

- 53. In a parallelogram ABCD, E and F are the midpoints of the sides AB and CD respectively. If P, Q are the points of intersection of AF and EC with the diagonal BD, then DQ:QB =
 - (1) 1:1 (2) 1:2 (3) 2:1 (4) 3:2

54. For $a \neq b$ and $a \neq -b$, if the points (a, b), (b, a) and $(a^2, -b^2)$ lie on a line, then the relation between *a*, *b* and the equation of that line is

(1)	a = 1 + b; x + y = a + b	(2)	b = 1 + a, x + y = 1
(3)	$a = 1 + b, x + y = a^2 - b^2$	(4)	b = 1 - a, x - y = a + b

55. The equation of one side of an equilateral triangle is x + y - 2 = 0. If its incentre lies at the origin, then the coordinates of the vertex opposite to this side are

(1) (-2, -3) (2) (-1, -1) (3) (-1, -2) (4) (-2, -2)

56. Suppose the triangle ABC has an area 12 sq.units with AC = 6 units, AB = 8 units and <u>BAC</u> being obtuse. The length of the side BC is

(1)	$\sqrt{100-48\sqrt{3}}$	(2)	$\sqrt{76}$
(3)	$\sqrt{100 + 48\sqrt{3}}$	(4)	$\sqrt{124}$

- 57. The distance between a moving point, from the fixed points (1, 0) and (-1, 0) are in the ratio $\sqrt{2}$:1. Then the equation of the locus of that moving point is
 - (1) $x^{2} + y^{2} + 6x + 1 = 0$ (2) $x^{2} + y^{2} - 6x + 1 = 0$ (3) $(\sqrt{2} - 1)x^{2} + 2(\sqrt{2} + 1)x + (\sqrt{2} - 1)y^{2} + (\sqrt{2} - 1) = 0$ (4) $x^{2} + y^{2} + 3x + 1 = 0$

58. The equation $ax^2 + by^2 + 2gx + 2fy + c = 0$ (where $a \neq 0 \neq b$) represents a circle

- (1) for all values of a, b, g, f, c
- (2) if $g^2 + f^2 \ge ac$ and a = b
- (3) if $g^2 + f^2 \ge a^2 c$ and a = b
- (4) for all values of a, b, g, f, c and a = b

Booklet Code

- 59. The locus of the point which divides the line joining (5, 0) and $(10\cos\theta, 10\sin\theta)$ internally in the ratio 2:3 is
 - (1) $x^2 + y^2 = 100$ (2) $2x^2 + y^2 = 1$ (3) $(x-3)^2 + y^2 = 16$ (4) $x^2 + (y-3)^2 = 16$
- 60. If a straight line is moving on the cartesian plane such that the sum of the reciprocals of its intercepts is unity, then the fixed point through which that line passes is

(1)
$$\left(2, \frac{1}{2}\right)$$
 (2) (1, 1)
(3) $\left(\frac{1}{3}, \frac{1}{3}\right)$ (4) $\left(\frac{1}{4}, 4\right)$

- 61. Consider the following pairs of parallel lines.
 - (A) 2x + 3y + 1 = 0, 2x + 3y + 14 = 0
 - (B) 2x + y + 1 = 0, 2x + y + 5 = 0
 - (C) x + y + 7 = 0, x + y + 4 = 0
 - (D) 4x + 3y + 1 = 0, 8x + 6y + 2 = 0

If p, q, r, s denote the distance between the pair of lines in (A), (B), (C), (D) respectively then

- $(1) \quad s < q < p < r \tag{2} \quad s < q < r < p$
- (3) p < q < r < s (4) r < q < p < s
- 62. Let A(1, 2) be a point on one side of the line L = x + y + 1 = 0. A point 'B' lies on the other side of L = 0 such that the perpendicular distance from B to the line L is twice the perpendicular distance of A from the line L. Then the coordinates of B are

(1)	(-5, -4)	(2)	(-3, -2)
(3)	(3, 1)	(4)	(7, 8)

63. If |OP| = 13 and the direction ratios of line \overrightarrow{OP} are 6, 8, -24, then the point P is

(1) (6, 8, -24) (2) (3, 4, -12) (3) $\left(\frac{3}{2}, 2, -6\right)$ (4) (0, 0, 13)

64.	and radius 3, then the point (6, 2) lies(1) in the region common to the two circles								
	(2) in the region of the circle S, and out side the circle S'								
	(3)	e		ircle S' and out					
	(4)	out side the re	egion of	both the circles	s S and	15			
65.	A ro	d of given leng	th mov	es with its end p	points o	on the fixed stra	aight lir	nes at right angles.	
	The	n any point on t	he rod o	describes					
	(1)	a Circle			(2)	a Parabola			
	(3)	an Ellipse			(4)	a Straight line			
66.		e tangent draw e $x^2 + y^2 = 13$ a			$e x^2 + 1$	$y^2 + 2x - 10y -$	26 = 0	touches the other	
	(1)	$\sqrt{13}$	(2)	$\sqrt{17}$	(3)	$\sqrt{12}$	(4)	4	
67.		-	_	e passing throug en $a + b + c + d$	_	points (-1, 2, -3), (5, 0,	-6) and (0, 4, -1)	
	(1)		(2)		(3)	75	(4)	85	
68.	that	-			-	-		g in the plane such ne line L, then the	
	(1)	a circle			(2)	a parabola			
	(3)	an ellipse			(4)	a hyperbola			
69.		^		m ² , the distance th 20 m. The le		•		s 15 m and one of is	
	(1)	44 m			(2)	20 m			
	(3)	64 m			(4)	24 m			
70.						—		le having volume ht of the cone is	
	(1)		(2)	84	(3)		(4)		

						o its to	otal surface area is
(1)	489 cm^3	o uro					
(3)	539 cm ³			(4)	2729 cm ³		
O is	the centre of the	circui	ncircle of $\triangle ABC$	for w	hich $ BAC = \theta$.	If the	angle made by the
chor	d BC of the circ	le at tl	he centre O is 80	°, the	$n \theta =$		
(1)	160°	(2)	80°	(3)	20°	(4)	40°
			-				
(1)	426 sq.m.			(2)	289 sq.m.		
(3)	672 sq.m.			(4)	313 sq.m.		
	•		-			om a t	hin square sheet of
(1)	11	(2)	7	(3)	4	(4)	22
-				to ma	ke 'n' square she	eets of	side half its radius
(1)	$\frac{11}{3}$	(2)	$\frac{21}{16}$	(3)	$\frac{41}{22}$	(4)	$\frac{21}{352}$
recta	ngular sheet. If t						
(1)	58 m	(2)	616 m	(3)	116 m	(4)	1232 m
						³ . If it	costs Rs. 500 per
(1)	1972	(2)	1960	(3)	1942	(4)	1928
		here	and a cube are e	qual,	hen the ratio of	their	respective surface
(1)	$\sqrt[3]{11}:\sqrt[3]{21}$			(2)	2:3		
(3)	$\sqrt[3]{11}$: $\sqrt{21}$			(4)	$\sqrt[3]{11}:1$		
	1:3. (1) (3) O is chor (1) 4 cov they (1) (3) How wax (1) A spi and b (1) A cy recta recta (1) The kilog (1) If the areas (1)	1:3. If the total surface (1) 489 cm ³ (3) 539 cm ³ O is the centre of the chord BC of the circle (1) 160° 4 cows are tethered to they just can reach or (1) 426 sq.m. (3) 672 sq.m. How many candles of wax whose one side is (1) 11 A spherical iron ball of and unit thickness. The (1) $\frac{11}{3}$ A cylinder having a single rectangular sheet. If the rectangle is (1) 58 m The density of a method kilogram, then the condition (1) 1972 If the volume of a speared is (1) $\sqrt[3]{11}:\sqrt[3]{21}$	1:3. If the total surface are (1) 489 cm ³ (3) 539 cm ³ O is the centre of the circum chord BC of the circle at th (1) 160° (2) 4 cows are tethered to the 4 they just can reach one and (1) 426 sq.m. (3) 672 sq.m. How many candles of 1 cm wax whose one side is of 16 (1) 11 (2) A spherical iron ball of radia and unit thickness. The rat (1) $\frac{11}{3}$ (2) A cylinder having a surface rectangular sheet. If the her rectangle is (1) 58 m (2) The density of a metallices kilogram, then the cost of a (1) 1972 (2) If the volume of a sphere a areas is (1) $\sqrt[3]{11}: \sqrt[3]{21}$	1:3. If the total surface are is 462 cm ³ , its v (1) 489 cm ³ (3) 539 cm ³ O is the centre of the circumcircle of \triangle ABC chord BC of the circle at the centre O is 80 (1) 160° (2) 80° 4 cows are tethered to the 4 corners of a squ they just can reach one another on its sides. (1) 426 sq.m. (3) 672 sq.m. How many candles of 1 cm radius and heigh wax whose one side is of length 22 cm and (1) 11 (2) 7 A spherical iron ball of radius 'r' was melted and unit thickness. The ratio of r to n is (1) $\frac{11}{3}$ (2) $\frac{21}{16}$ A cylinder having a surface area 616 sq. met rectangular sheet. If the height of the cylind rectangle is (1) 58 m (2) 616 m The density of a metallic sphere of diamet kilogram, then the cost of that metallic sphere (1) 1972 (2) 1960 If the volume of a sphere and a cube are en- areas is (1) $\sqrt[3]{11}: \sqrt[3]{21}$	1:3. If the total surface are is 462 cm ³ , its volume (1) 489 cm ³ (2) (3) 539 cm ³ (4) O is the centre of the circumcircle of ΔABC for we chord BC of the circle at the centre O is 80°, then (1) 160° (2) 80° (3) 4 cows are tethered to the 4 corners of a square fit they just can reach one another on its sides. The at (1) 426 sq.m. (2) (3) 672 sq.m. (4) How many candles of 1 cm radius and height 7 cm wax whose one side is of length 22 cm and thickr (1) 11 (2) 7 (3) A spherical iron ball of radius 'r' was melted to mat and unit thickness. The ratio of r to n is (1) $\frac{11}{3}$ (2) $\frac{21}{16}$ (3) A cylinder having a surface area 616 sq. meter is constructed rectangular sheet. If the height of the cylinder is the rectangle is (1) 58 m (2) 616 m (3) The density of a metallic sphere of diameter 9.8 kilogram, then the cost of that metallic sphere (in (1) 1972 (2) 1960 (3) If the volume of a sphere and a cube are equal, the areas is (1) $\sqrt[3]{11}: \sqrt[3]{21}$ (2)	1:3. If the total surface are is 462 cm ³ , its volume V is given by (1) 489 cm ³ (2) 729 cm ³ (3) 539 cm ³ (4) 2729 cm ³ (4) 2729 cm ³ O is the centre of the circumcircle of ΔABC for which $ \underline{BAC} = \theta$. chord BC of the circle at the centre O is 80°, then $\theta =$ (1) 160° (2) 80° (3) 20° 4 cows are tethered to the 4 corners of a square field of side 56 m they just can reach one another on its sides. The area left ungraze (1) 426 sq.m. (2) 289 sq.m. (3) 672 sq.m. (4) 313 sq.m. How many candles of 1 cm radius and height 7 cms can be made fr wax whose one side is of length 22 cm and thickness 1 cm? (1) 11 (2) 7 (3) 4 A spherical iron ball of radius 'r' was melted to make 'n' square she and unit thickness. The ratio of r to n is (1) $\frac{11}{3}$ (2) $\frac{21}{16}$ (3) $\frac{41}{22}$ A cylinder having a surface area 616 sq. meter is cut along its height rectangle is (1) 58 m (2) 616 m (3) 116 m The density of a metallic sphere of diameter 9.8 cm is 8 gm/cm kilogram, then the cost of that metallic sphere (in Rs.) is nearly (1) 1972 (2) 1960 (3) 1942 If the volume of a sphere and a cube are equal, then the ratio of areas is (1) $\sqrt[3]{11}$; $\sqrt[3]{21}$ (2) 2:3	(1) 489 cm^3 (2) 729 cm^3 (3) 539 cm^3 (4) 2729 cm^3 O is the centre of the circumcircle of ΔABC for which $ BAC = 0$. If the chord BC of the circle at the centre O is 80° , then $0 =$ (1)(1) 160° (2) 80° (3) 20° (4) 2729 cm^3 (4)4 cows are tethered to the 4 corners of a square field of side 56 meters they just can reach one another on its sides. The area left ungrazed by the field of side 56 meters of a form radius and height 7 cms can be made from a twax whose one side is of length 22 cm and thickness 1 cm?(1)11(2)7(3)4(1)11(2)7(3) 4^{-1} (1) $\frac{11}{3}$ (2) $\frac{21}{16}$ (3) $\frac{41}{22}$ (4)A spherical iron ball of radius 'r' was melted to make 'n' square sheets of and unit thickness. The ratio of r to n is(1) $\frac{11}{3}$ (2) $\frac{21}{16}$ (3) $\frac{41}{22}$ (4)A cylinder having a surface area 616 sq. meter is cut along its height and rectangular sheet. If the height of the cylinder is twice its raduis, then th rectangle is(1) 58 m(2) 616 m(3) 116 m(4)The density of a metallic sphere of diameter 9.8 cm is 8 gm/cm ³ . If it kilogram, then the cost of that metallic sphere (in Rs.) is nearly(1) 1972 (2) 1960 (3) 1942 (4)

17 - A

Booklet Code

79. Let $x_1, x_2, ..., x_n$ be distinct observations in decreasing order. If the first observation is increased by K and the last observation is decreased by K, then

Which one of the following does not get altered?

- (1) Only mean
- (2) Both mean and median
- (3) Both mean and mode
- (4) All mean, median and mode
- 80. Match the following:

Let x_1, x_2, \dots, x_n be a set of observations and f_1, f_2, \dots, f_n be their frequencies.

 $\frac{\text{List} - A}{A}$ $A) \qquad \sum_{i=1}^{n} (x_i - \overline{x})$

B) Mean deviation

C)
$$\frac{\sum_{i=1}^{n} (y_i - \overline{y})^2 f_i}{\sum f_i}$$

Where $y_i = x_i + K$

D) Square of the coefficient of variation of x_i

<u>List - B</u>

- I) Variance of x_i 's
- II) Zero

III)
$$\left(\frac{\sum x_i^2 f_i}{\left(\sum f_i\right)\overline{x}^2} - 1\right) 100^2$$

IV) Mean of the absolute deviations from mean

V)
$$\left(\frac{\sigma_y}{\overline{x}} \times 100\right)^2$$

Then the correct match is

	(A)	(B)	(C)	(D)
(1)	IV	Ι	II	V
(2)	Ι	II	III	IV
(3)	II	III	IV	V
(4)	Π	IV	Ι	III

81.	If each one of the value of n observations is increased by K(>0), then the coefficiect of variation of the distribution							
	(1) decreases		(2)	increases				
	(3) is unaltered	1	(4)	becomes z	ero			
82.	For a distribution	n, if the median is 6 a	and mode is	8, then its m	ean is			
	(1) 5	(2) 7	(3)	10	(4) 4			
83.	If 5 boys and 6 gi which all the girl	rls are arranged in a l ls are together, is	row, then the	e probability	of having an arrange	ement in		
	(1) $\frac{5! 6!}{11!}$		(2)	<u>6! 6! 2!</u> <u>11!</u>				
	(3) $\frac{6! 6!}{11! 2!}$		(4)	<u>6!6!</u> 11!				
84.	the probability o	aining 10 red balls and f getting both the blue balls, then the number of the second s	ue balls is th	ne same as th	e probability of get			
	(1) 11	(2) 20	(3)	21	(4) 9			
85.		rvations with equal 1 iations α and β respections		^				
	(1) $\alpha < \beta$		(2)	$\alpha > \beta$				
	(3) $\alpha = \beta$							
			(4)	$\alpha = \beta = 0$				
86.	· · · ·	ected at random from robability that the ma	m the set of	all mapping		n(A) = 7		
86.	· · · ·		m the set of	all mapping		n(A) = 7		
86.	into itself. The p		m the set of apping thus (2)	all mapping selected is a		$\mathbf{n}(\mathbf{A}) = 7$		

87. Consider the data : 1, 2, *m*, 7, 15, 10, 8, 35, 76, 9, 27 and the statements given below :

- A) m is the median, when m is any value between 9 and 10.
- B) 9 is the median, when *m* is any value less than 9.
- C) 10 is the median, when m is any value greater than 10.

Which one of the following is true?

- (1) Only(A) and(B)
- (2) Only (B) and (C)
- (3) Only (C) and (A)
- (4) All the three statements (A), (B), (C)

88. If $\sum_{i=1}^{18} (x_i - 8) = 9$ and $\sum_{i=1}^{18} (x_i - 8)^2 = 45$, then the standard deviation of the observations $x_i (i = 1, 2, 3, ..., 18)$, is (1) $\frac{9}{5}$ (2) $\frac{9}{4}$ (3) $\frac{3}{2}$ (4) $\frac{1}{5}$ 89. If $\pi < x < \frac{3\pi}{2}$ and $\tan x = \frac{3}{4}$ then $10 \left(\sin \frac{x}{2} - \cos \frac{x}{2} \right) - 3 \cot \frac{x}{2} =$ (1) $2\sqrt{10} + 3$ (2) $4\sqrt{10} + 1$

(3)
$$3\sqrt{5} - 2$$
 (4) $\frac{3+\sqrt{5}}{2}$

90. The period of $f(x) = |\sin 2x|$ is

(1) π (2) $\frac{\pi}{2}$ (3) 2π (4) 0

Booklet Code

91. For
$$x, y \in \mathbb{R}$$
, the solution of the equations $x + y = \frac{2\pi}{3}$ and $\cos x + \cos y = \frac{3}{2}$ is
(1) $x = \frac{\pi}{6}, y = \frac{\pi}{2}$ (2) $x = \frac{\pi}{3}, y = \frac{\pi}{3}$
(3) $x = \frac{\pi}{4}, y = \frac{5\pi}{12}$ (4) Non existent (does not exist)
92. $\cos 36^{\circ} - \sin 18^{\circ} =$
(1) 0 (2) $\frac{\sqrt{5}}{2}$ (3) $\frac{1}{4}$ (4) $\frac{1}{2}$
93. If $\sin x - \sin y = a$ and $\cos x + \cos y = b$, then the value of $\sin\left(\frac{x+y}{2}\right)$, interms of a and b , is
(1) $\pm \frac{1}{2}\sqrt{4-a^2-b^2}$ (2) $\pm \sqrt{4+a^2+b^2}$
(3) $+\frac{1}{2}\sqrt{4+a^2+b^2}$ (4) $\pm \sqrt{4-a^2-b^2}$
94. If $\sin^{-1}x + \sin^{-1}2x = \frac{\pi}{3}$ then $x =$
(1) $\frac{\sqrt{21}}{14}$ (2) $\frac{2\sqrt{12}}{7}$
(3) $\frac{3\sqrt{21}}{2}$ (4) $\frac{\sqrt{3}}{7\sqrt{2}}$
95. If $\tan \theta$ is the geometric mean between $\sin \theta$ and $\cos \theta$ then

 $2 - 4\sin^2\theta + 3\sin^4\theta - \sin^6\theta =$ (1) 0 (2) 1 (3) 2 (4) -1

21 - A

Booklet Code A

The number of solutions of the equation $\sin^{-1}x + \cos^{-1}x^2 = \frac{\pi}{2}$ is 96. (1) 0 (2) 3 (4) 2 (3) 1 97. $\operatorname{Sin}^{-1}\left(\frac{12}{13}\right) + \operatorname{Cos}^{-1}\left(\frac{4}{5}\right) + \operatorname{Tan}^{-1}\left(\frac{63}{16}\right) =$ (1) π (2) 2π (3) 0 (4) $-\pi$ In \triangle ABC, with the usual notation, $r_1 - r_2 + r_3 + r =$ 98. (1) $8R \cos B$ (2) $4R \cos B$ (3) 2R cos $\frac{B}{2}$ 4R sin B (4)

99. In a triangle ABC, if the lengths of the sides are $1,\sqrt{3},2$ and its circum radius is *r*, then its area is

(1)	$\frac{\sqrt{3}}{2r}$	(2)	$\frac{\sqrt{3}}{r}$
(3)	$4\sqrt{3} r$	(4)	$8\sqrt{3} r$

100. In $\triangle ABC$, if $\tan \frac{A}{2} = \frac{5}{6}$ and $\tan \frac{C}{2} = \frac{2}{5}$, then (1) 2a + c = b (2) a + c = 2b(3) $b^2 = ac$ (4) 2(a + c) = b

SPACE FOR ROUGH WORK

SPACE FOR ROUGH WORK