Hall Ticket Number

| 1 |  |  |  |  |
|---|--|--|--|--|
| 1 |  |  |  |  |
|   |  |  |  |  |
|   |  |  |  |  |

| Q.B.No. | 6 | 3 | 4 | 3 | 2 | 1 |
|---------|---|---|---|---|---|---|
|---------|---|---|---|---|---|---|

Booklet Code :



Marks : 100 Time : 120 minutes

Signature of the Candidate

Signature of the Invigilator

## INSTRUCTIONS TO THE CANDIDATE

**3TS1C** 

(Read the Instructions carefully before Answering)

- 1. Separate Optical Mark Reader (OMR) Answer Sheet is supplied to you along with Question Paper Booklet. Please read and follow the instructions on the OMR Answer Sheet for marking the responses and the required data.
- 2. The candidate should ensure that the Booklet Code printed on OMR Answer Sheet and Booklet Code supplied are same.
- 3. Immediately on opening the Question Paper Booklet by tearing off the paper seal, please check for (i) The same booklet code (A/B/C/D) on each page, (ii) Serial Number of the questions (1-100), (iii) The number of pages and (iv) Correct Printing. In case of any defect, please report to the invigilator and ask for replacement of booklet with same code within five minutes from the commencement of the test.
- 4. Electronic gadgets like Cell Phone, Calculator, Watches and Mathematical/Log Tables are not permitted into the examination hall.
- 5. **There will be** <sup>1</sup>/<sub>4</sub> **negative mark for every wrong answer.** If the response to the question is left blank without answering, there will be no penalty of negative mark for that question.
- 6. Using Blue/Black ball point pen to darken the appropriate circles of (1), (2), (3) or (4) in the OMR Answer Sheet corresponding to correct or the most appropriate answer to the concerned question number in the sheet. Darkening of more than one circle against any question automatically gets invalidated and will be treated as wrong answer.
- 7. Change of an answer is NOT allowed.
- 8. Rough work should be done only in the space provided in the Question Paper Booklet.
- 9. Return the OMR Answer Sheet and Question Paper Booklet to the invigilator before leaving the examination hall. Failure to return the OMR sheet and Question Paper Booklet is liable for criminal action.

This Booklet consists of 13 Pages for 100 Questions + 2 Pages of Rough Work + 1 Title Page i.e. Total 16 Pages.





SPACE FOR ROUGH WORK

3TS1C

Booklet Code A

### **Time : 2 Hours**

Marks: 100

### **Instructions :**

- i) Each question carries *one* mark and <sup>1</sup>/<sub>4</sub> negative mark for every wrong answer.
- ii) Choose the correct or most appropriate answer from the given options to the following questions and darken, with Blue/Black Ball Point Pen, the corresponding digit **1**, **2**, **3** or **4** in the circle pertaining to the question number concerned in the OMR Answer Sheet, separately supplied to you.

| 1. | State the number of significant digits for measurement of mass of a granite block of $M = 2.40 \times 10^6$ kg.                           |                                       |                   |                          |                        |                  |                             |                            |                                 |  |  |  |
|----|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------|--------------------------|------------------------|------------------|-----------------------------|----------------------------|---------------------------------|--|--|--|
|    | (1)                                                                                                                                       | 2                                     | (2)               | 3                        |                        | (3)              | 6                           | (4)                        | 9                               |  |  |  |
| 2. | If th<br>and                                                                                                                              | e unit of length,<br>10 sec respectiv | mass a<br>ely, th | and time o<br>en the uni | of a part<br>it of for | ticular<br>ce in | r system are<br>this system | e chosen to<br>will be equ | be 10 cm, 100 gm<br>ivalent to: |  |  |  |
|    | (1)                                                                                                                                       | 10 <sup>4</sup> N                     | (2)               | 10 <sup>-3</sup> N       |                        | (3)              | $10^{5}  { m N}$            | (4)                        | 10 <sup>-4</sup> N              |  |  |  |
| 3. | Whi                                                                                                                                       | ich of the follow                     | ing is            | the most p               | polluted               | l rivei          | in the wor                  | ld                         |                                 |  |  |  |
|    | (1)                                                                                                                                       | Thames                                | (2)               | Nile                     |                        | (3)              | Ganga                       | (4)                        | Amazon                          |  |  |  |
| 4. | CNO                                                                                                                                       | G is a/an                             |                   |                          |                        |                  |                             |                            |                                 |  |  |  |
|    | (1)                                                                                                                                       | clean fuel                            |                   |                          |                        | (2)              | incombus                    | tible substa               | nce                             |  |  |  |
|    | (3)                                                                                                                                       | polluted fuel                         |                   |                          |                        | (4)              | toxic fuel                  |                            |                                 |  |  |  |
| 5. | The most serious inorganic contaminants in the drinking water on a world wide basis as recognized by World Health Organization (WHO) are: |                                       |                   |                          |                        |                  |                             |                            |                                 |  |  |  |
|    | (1)                                                                                                                                       | Chloride and S                        | ulfide            | -                        |                        | (2)              | Fluoride a                  | nd Lanthan                 | ide                             |  |  |  |
|    | (3)                                                                                                                                       | Arsenic and Fl                        | uoride            |                          |                        | (4)              | Nitrate and                 | d Chloride                 |                                 |  |  |  |
| 6. | Whi                                                                                                                                       | ich type of satell                    | ites co           | over the er              | ntire ear              | rth su           | rface at reg                | ular time ir               | itervals                        |  |  |  |
|    | (1)                                                                                                                                       | Polar orbiting                        | satelli           | te                       |                        | (2)              | Geostation                  | nary satelli               | te                              |  |  |  |
|    | (3)                                                                                                                                       | Asynchronous                          | satelli           | te                       |                        | (4)              | Low-earth                   | n orbit satel              | lites                           |  |  |  |
| 7. | Mod                                                                                                                                       | lern astronomers                      | shave             | divided th               | ne whol                | e sky            | into:                       |                            |                                 |  |  |  |
|    | (1)                                                                                                                                       | 77 constellation                      | ons               |                          |                        | (2)              | 88 conste                   | llations                   |                                 |  |  |  |
|    | (3)                                                                                                                                       | 128 constellat                        | ions              |                          |                        | (4)              | 108 const                   | ellations                  |                                 |  |  |  |
| 8. | Whi                                                                                                                                       | ich mirror is use                     | d by d            | entists to e             | examin                 | e cavi           | ities in the t              | eeth?                      |                                 |  |  |  |
|    | (1)                                                                                                                                       | Plane mirror                          | -                 |                          |                        | (2)              | A combination               | ation of pla               | ne and convex                   |  |  |  |
|    | (3)                                                                                                                                       | Convex mirror                         |                   |                          |                        | (4)              | Concaver                    | nirror                     |                                 |  |  |  |
|    |                                                                                                                                           |                                       |                   |                          |                        |                  |                             |                            |                                 |  |  |  |

Booklet Code

A beam of monochromatic light of wavelength 4000 Å in air travels in water ( $\mu$  (refractive 9. index) =  $\frac{4}{3}$ ). What will be the wavelength of light in the water? (2) 3150 Å (1) 3000 Å (3)2800 Å (4) 4000 Å 10. If Helium gas is contained in a 1 cm<sup>3</sup> volume at 10<sup>5</sup> Pa/pressure and kept at 273 K temperature, then the approximate number of Helium atoms are  $(K_B = 1.38 \times 10^{-23} \text{ m}^2 \text{ kg s}^{-2} \text{ K}^{-1})$ (1)  $3 \times 10^{23}$ 6×10<sup>26</sup> (3)  $6 \times 10^{23}$ (4)  $3 \times 10^{19}$ (2)Consider a plane wave of light of wavelength ' $\lambda$ ' incident on an opaque screen with a circular 11. opening of diameter 'a'. If the circular opening has to behave like a point source of light, the relation between ' $\lambda$ ' and 'a' should be (1)  $\lambda >> a$ (3)  $\lambda \ll a$ (2)  $\lambda = a$ (4)  $\lambda = 2a$ Choose the sequence containing all incorrect statements 12. A) Speed of sound depends upon temperature of the sound source Loud sound can travel a longer distance due to higher amplitude B) To hear a distinct echo each time, interval between the original and reflected sound C) must be at least 0.1 sec. Tympanic membrane of human ear converts sound vibrations into electric signals D) A, B and D (2) A, C and D (3) A and D (1)(4) B and C13. For an object placed at 20 cm from a symmetrical lens of refractive index 1.65, if the lateral magnification of the object is  $-\frac{1}{4}$ , the lens type and image character are (1)converging lens, virtual image (2)diverging lens, virtual image (3)converging lens, real image (4)diverging lens, real image A car is moving with a speed 54 km/hr when the driver sees the red signal 40 m ahead. The 14. car can be slowed with a deceleration  $5m/s^2$ . If the reaction time of the driver is 0.2 sec, what is the stopping distance. (1)25.5 m (2)22.5 m (3) 50.6 m (4)40 m A box suspended by a rope is pulled to one side by a horizontal force. The tension in the 15. rope (1) is unchanged is less than before (2)is greater than before (3) may be any of the above, depends on how strong the force is (4)When F<sub>a</sub>, F<sub>b</sub>, F<sub>c</sub> forces are acting on a particle of mass 'm' such that F<sub>b</sub> and F<sub>c</sub> are mutually 16. perpendicular, then the particle remains stationary. If the force F<sub>a</sub> is now removed, then the magnitude of acceleration of the particle is:

(1) 
$$\frac{F_{a}}{m}$$
 (2)  $\frac{F_{b}F_{c}}{m}$  (3)  $\frac{F_{b}+F_{c}}{m}$  (4)  $\frac{F_{c}-F_{b}}{m}$ 



- 17. A curve of radius 30 m is to be banked so that a car may make the turn at a speed of 13 m/s without depending on friction. What must be the approximate slope of the roadway? [use  $g = 10 \text{ m/s}^2$ ] (1)  $45^\circ$  (2)  $30^\circ$  (3)  $20^\circ$  (4)  $60^\circ$
- 18. A satellite of mass *m*, initially at rest on the earth, is launched into a circular orbit at a height equal to two times of the radius of the earth. The minimum energy required is: (R is the radius of the earth, g is the acceleration due to gravity)

(1) 
$$\frac{3}{4}mgR$$
 (2)  $mgR$  (3)  $\frac{1}{2}mgR$  (4)  $\frac{5}{6}mgR$ 

- 19. Which one is true about earth's magnetism?
  - (1) Earth's magnetic field is approximately 0.1 gauss
  - (2) Angle of dip at poles is  $0^{\circ}$
  - (3) The angle between magnetic meridian and geographic meridian at a place is  $73^{\circ}$
  - (4) Earth's magnetic field is approximately 1T
- 20. In which of the following a permanent magnet is not used?
  (1) Loud-speakers (2) transformers (3) magnetoes (4) energy meters
- 21. A bar magnet is divided into two pieces. Which of the following statement is true about the force between the broken pieces if they face each other with a small separation?
  - (1) There is an electric repulsive force between the broken pieces
  - (2) There is a magnetic attractive force between the broken pieces
  - (3) There is a magnetic repulsive force between the broken pieces
  - (4) There is no force between the broken pieces
- 22. A straight wire of diameter 0.5 mm carrying a current of 10 A is replaced by another wire of 1 mm diameter carrying same current. What is the strength of the magnetic field at a given point outside the wire
  - (1)  $\frac{1}{4}$  th of the earlier value (2)  $\frac{1}{2}$  of the earlier value
  - (3) same as the earlier value (4) two times the earlier value
- 23. When the same potential difference is used to accelerate a proton and an electron, then(1) The proton has the higher velocity(2) The electron has more kinetic energy
  - (3) The proton has more kinetic energy (4) The electron has the higher velocity
- 24. A copper wire has a resistance of 10  $\Omega$  at 20 °C. What will be its resistance at 80 °C. [ $\alpha_{copper} = 0.004/^{\circ}C$ ,  $\alpha$  is the temperature coefficient of resistance] (1) 3.4  $\Omega$  (2) 10.0  $\Omega$  (3) 11.6  $\Omega$  (4) 12.4  $\Omega$
- 25. Three charges each equal to +5 C are placed at the corner of an equilateral triangle. If the force between any two charges be 2F, then the net force on either will be

(1) 2 F (2) 3 F (3) 
$$2\sqrt{3}F$$
 (4)  $3\sqrt{2}F$ 



 $\frac{1}{2}$ 

- 26. A resistor R connected to a battery dissipates energy at the rate P. If another resistor is connected in parallel with R, then the power dissipated by R is
  - (1) Less than P
  - (2) P
  - (3) More than P
  - (4) Can be either more or less depending on the value of resistances
- 27. A radio set operates at 6V DC. A transformer with 18 turns in the secondary coil is used to step down the input 220V AC emf to 6V AC emf. This AC emf is then rectified by another circuit to give 6V DC which is fed to the radio. Find the number of turns in the primary coil. (1) 500 (2) 560 (3) 600 (4) 660
- 28. A 100 turn coil whose resistance is 6  $\Omega$  encloses an area of 80 cm<sup>2</sup>. How rapidly should a magnetic field parallel to its axis change to induce a current of 1 mA in the coil. (1) 7.5×10<sup>-3</sup> T/s (2) 9.3×10<sup>-3</sup> T/s (3) 8.9×10<sup>-3</sup> T/s (4) 6.6×10<sup>-3</sup> T/s
- 29. A proton and an  $\alpha$  particle having same momentum are fired through a magnetic field.

If R<sub>1</sub> and R<sub>2</sub> respectively are the radii of their circular paths, then  $\frac{R_1}{R_2}$  =

(1) 
$$\frac{1}{2}$$
 (2)  $\frac{1}{\sqrt{2}}$  (3) 2 (4)  $\sqrt{2}$ 

30. A photo-sensitive material would emit electrons if excited by photons beyond a threshold. Which of the following will be increased to cross the threshold?

- (1) Intensity of light (2) Wavelength of light
- (3) Frequency of light (4) Voltage applied to the light source
- 31. Half-life period of a radioactive element is 50 years. What fraction of the element will remain after 100 years.

(1) 
$$\frac{1}{16}$$
 (2)  $\frac{1}{8}$  (3)  $\frac{1}{4}$  (4)

32. Which isotope is used to remove the brain tumors and treatment of cancer? (1) U-235 (2) Th-234 (3) Na-24 (4) Co-60

33. In a radioactive process  ${}^{238}U_{92}$  transform to a stable end product  ${}^{206}Pb_{82}$ . How many  $\alpha$  and  $\beta$  particles are emitted in this process? (1) 5 and 12 (2) 8 and 6 (3) 16 and 6 (4) 10 and 12

| 34. | Whi | ch of the fo | ollowing doe | s not repr | esent(s) the | STP con | ditions?     |      |  |
|-----|-----|--------------|--------------|------------|--------------|---------|--------------|------|--|
|     | a)  | 273 K an     | d 101.3 kPa  | -          | b)           | 273 K a | and 760 mm H | Ig   |  |
|     | c)  | 298 K an     | d 101.3 Pa   |            | d)           | 298 K a | and 14.7 psi | -    |  |
|     | (1) | c, d         | (2)          | a, c, d    | (3)          | a, d    | (4)          | a, c |  |



| 35. | In g<br>diffe                           | as chromatograp<br>erence in                                                                                                     | ohy, tł                                                   | ne basis for sepa                                                                                    | aration                              | ration of the given compounds is due to the                                      |                                    |                                   |  |  |
|-----|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------|----------------------------------------------------------------------------------|------------------------------------|-----------------------------------|--|--|
|     | (1)                                     | Molecular weig                                                                                                                   | ght                                                       |                                                                                                      | (2)                                  | Concentration                                                                    |                                    |                                   |  |  |
|     | (3)                                     | Partition coeff                                                                                                                  | icient                                                    | 5                                                                                                    | (4)                                  | Conductivity                                                                     |                                    |                                   |  |  |
| 36. | Hea                                     | ting a mixture of                                                                                                                | Cu <sub>2</sub> O                                         | and Cu <sub>2</sub> S will gi                                                                        | ive                                  |                                                                                  |                                    |                                   |  |  |
|     | (1)                                     | $Cu + SO_2$                                                                                                                      |                                                           |                                                                                                      | (2)                                  | $Cu + SO_3$                                                                      |                                    |                                   |  |  |
|     | (3)                                     | CuO + CuS                                                                                                                        |                                                           |                                                                                                      | (4)                                  | $Cu_2SO_3$                                                                       |                                    |                                   |  |  |
| 37. | The                                     | decomposition of                                                                                                                 | of KCl                                                    | $O_3$ to KCl and C                                                                                   | $D_2$ on h                           | leating is an exam                                                               | nple o                             | f                                 |  |  |
|     | (1)                                     | Neutralization                                                                                                                   | reaction                                                  | on                                                                                                   | (2)                                  | Intermolecular                                                                   | redox                              | reaction                          |  |  |
|     | (3)                                     | Intramolecular                                                                                                                   | redox                                                     | reaction                                                                                             | (4)                                  | Auto redox rea                                                                   | ction                              |                                   |  |  |
| 38. | Whi                                     | ch of the followi                                                                                                                | ng alk                                                    | ali metals has th                                                                                    | e higł                               | nest melting poin                                                                | t?                                 |                                   |  |  |
|     | (1)                                     | Na                                                                                                                               | (2)                                                       | Li                                                                                                   | (3)                                  | Rb                                                                               | (4)                                | Κ                                 |  |  |
| 39. | The                                     | species present i                                                                                                                | n wate                                                    | er when $CO_2$ is d                                                                                  | lissolv                              | red in water                                                                     |                                    |                                   |  |  |
|     | (1)                                     | $H_2CO_3, CO_3^{2-}$                                                                                                             |                                                           |                                                                                                      | (2)                                  | $CO_3^{2-}, HCO_3^{-}$                                                           |                                    |                                   |  |  |
|     | (3)                                     | $CO_2, H_2CO_3$                                                                                                                  |                                                           |                                                                                                      | (4)                                  | $CO_2$ , $H_2CO_3$ , H                                                           | $ICO_3^-$                          | , CO <sub>3</sub> <sup>2–</sup>   |  |  |
| 40. | The                                     | conjugate acid o                                                                                                                 | f NH                                                      | $\overline{2}$ is                                                                                    |                                      |                                                                                  |                                    |                                   |  |  |
|     | (1)                                     | $\mathrm{NH}_4^+$                                                                                                                | (2)                                                       | NH <sub>2</sub> OH                                                                                   | (3)                                  | NH <sub>3</sub>                                                                  | (4)                                | $N_2H_4$                          |  |  |
| 41. | Asso<br>Rea<br>(1)<br>(2)<br>(3)<br>(4) | eration $(A)$ : In b<br>son $(R)$ : In b<br>Both $(A)$ and $(A)$<br>Both $(A)$ and $(A)$<br>(A) is correct, b<br>(A) is wrong, b | leachi<br>leachi<br>R) are<br>R) are<br>out (R<br>out (R) | ng powder, oxid<br>ng powder, chlo<br>correct and (R)<br>correct and (R)<br>) is wrong<br>is correct | ation<br>rine is<br>is the<br>is not | state of the metal<br>in both +1 and –<br>correct explanati<br>the correct expla | is +2<br>1 oxic<br>on of<br>nation | lation states.<br>(A)<br>1 of (A) |  |  |
| 42. | Con                                     | sider the followi                                                                                                                | ng rea                                                    | iction                                                                                               |                                      |                                                                                  |                                    |                                   |  |  |
|     | NO                                      | $\frac{1}{2}$ + H <sup>+</sup> + $xe^{-}$ $\rightarrow$ N                                                                        | VO+H                                                      | O <sub>c</sub> I                                                                                     |                                      |                                                                                  |                                    |                                   |  |  |
|     | find                                    | the value of 'x',                                                                                                                | after b                                                   | alancing the equ                                                                                     | ation                                |                                                                                  |                                    |                                   |  |  |
|     | (1)                                     | 4                                                                                                                                | (2)                                                       | 3                                                                                                    | (3)                                  | 2                                                                                | (4)                                | 1                                 |  |  |
| 43. | Whi                                     | ch of the followi                                                                                                                | ng spo                                                    | ecies is diamagn                                                                                     | etic in                              | nature?                                                                          |                                    |                                   |  |  |
|     | (1)                                     | He <sub>2</sub> <sup>+</sup>                                                                                                     | (2)                                                       | $H_2^+$                                                                                              | (3)                                  | $H_2^-$                                                                          | (4)                                | $H_2$                             |  |  |
| 44. | Acc                                     | ording to Bohr's                                                                                                                 | theor                                                     | y, the angular me                                                                                    | oment                                | um of an electro                                                                 | n in 5t                            | h orbit is                        |  |  |
|     | (1)                                     | $25 \frac{h}{\pi}$                                                                                                               | (2)                                                       | $10 \frac{h}{\pi}$                                                                                   | (3)                                  | $1.0 \frac{h}{\pi}$                                                              | (4)                                | $2.5 \frac{h}{\pi}$               |  |  |



| 45. | The value of the 'spin only' magnetic moment for one of the following configurations is |
|-----|-----------------------------------------------------------------------------------------|
|     | 2.84 B.M. The correct one is                                                            |
|     | (1) $d^4$ (in strong ligand field)                                                      |
|     | (2) $d^4$ (in weak ligand field)                                                        |

- (3)  $d^3$  (in weak as well as in strong ligand fields)
- (4)  $d^5$  (in strong ligand field)

46. Heisenberg's uncertainity principle rules out the exact simultaneous measurement of

- probability and intensity (1)
- energy and velocity (2)
- charge density and radius position and momentum (3)(4)

### 47. The energy of an electron in an atomic orbital of a multielectron atom depends upon

- the principal quantum number only (1)
- (2)the principal and azimuthal quantum numbers only
- the principal, magnetic and azimuthal quantum numbers only (3)
- the principal, azimuthal, magnetic and spin quantum numbers only (4)

#### 48. Law of octaves was proposed by

(1)Dobereiner (2)Newland (3)Mandaleev (4)Rutherford

49. Which of the following is not the correct group?

C, Si, Ge, Se, Pb N, P, As, Sb, Bi (1)(2)Be, Mg, Ca, Sr (3) (4) B, Al, Ga, In, Tl

Supposing that Z = 117 is discovered, where would you like to place this element 50.

Alkali metals Inert gases (1)(2)(3) Halogen family (4) Oxygen family

51. The Mandaleev's periodic table arrangement is based on

- atomic weight atomic number (1)(2)(3)
  - ionic size (4) number of isotopes

Oxidation state and covalancy respectively of Aluminium in  $\left[ AlCl(H_2O)_5 \right]^{2+}$  is 52.

|     |       |     |       | _ |
|-----|-------|-----|-------|---|
| (1) | +6, 3 | (2) | +3, 6 |   |
| (3) | +3, 5 | (4) | +5, 3 |   |

53. Which of the following compound does not follow the octet rule?

| (1) | $CO_2$ | (2) | ) $PCl_3$ |
|-----|--------|-----|-----------|
|-----|--------|-----|-----------|

(3) ICl (4) ClF<sub>3</sub>







Booklet Code



62. Identify A, B, C respectively in the following reaction.





| 63.                            | Asso<br>Reas<br>(1)<br>(2)<br>(3)<br>(4) | ertion (A<br>son (R) :<br>Both (A<br>(A) is c<br>(A) is c<br>Both (A | A): 2, 3<br>The<br>A) and (<br>correct l<br>wrong b<br>A) and (             | dimet<br>e stabil<br>(R) are<br>out (R)<br>out (R)<br>R) are                     | thyl 2-but<br>ity is due<br>correct<br>is wrong<br>is correct<br>wrong                   | ene is n<br>to hype                                        | nore s<br>r conj                                  | table than 2<br>jugation                                                     | -butene                                                 |                                                   |
|--------------------------------|------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------|
| 64.                            | Whi<br>its c                             | ch of the<br>omplex                                                  | e follow<br>salt with                                                       | ing me<br>1 impu                                                                 | etals can b<br>re metal a<br>Zinc                                                        | e refine<br>t the an                                       | d by 1<br>ode a                                   | the electroly<br>nd a strip of                                               | sis of an ac<br>pure meta $(4)$                         | queous solution of<br>l at the cathode.           |
| 65.                            | A m<br>The                               | etal is let<br>metal m                                               | ft expose<br>ust be                                                         | time. It gets                                                                    | coated wit                                                                               | h green carbonate.                                         |                                                   |                                                                              |                                                         |                                                   |
|                                | (1)                                      | Silver                                                               |                                                                             | (2)                                                                              | Zinc                                                                                     |                                                            | (3)                                               | Copper                                                                       | (4)                                                     | Iron                                              |
| 66.                            | In w                                     | hich of                                                              | the follo                                                                   | owing                                                                            | is the corr                                                                              | osion o                                                    | f iron                                            | the most ra                                                                  | pid.                                                    |                                                   |
| (1) Pure water (2) Pure oxygen |                                          |                                                                      |                                                                             |                                                                                  |                                                                                          |                                                            |                                                   |                                                                              |                                                         |                                                   |
|                                | (3)                                      | Air and                                                              | l moistu                                                                    | ire                                                                              |                                                                                          |                                                            | (4)                                               | Air and sal                                                                  | ine water                                               |                                                   |
|                                | Reas<br>(1)<br>(2)<br>(3)<br>(4)         | son (R) :<br>Both (A<br>Both (A) is t<br>(A) is t<br>ch the fe       | yea<br>The<br>dia<br>and<br>A) and (<br>A) and (<br>true, but<br>false, but | rs.<br>e disco<br>gnostic<br>l impro<br>R) are<br>R) are<br>t (R) is<br>it (R) i | very of and<br>procedur<br>oved the hu<br>true and (<br>true, but (<br>false.<br>s true. | tibiotics<br>res etc.,<br>uman ho<br>(R) is th<br>(R) is n | s, synt<br>have o<br>ealth o<br>le corr<br>ot the | hetic or plan<br>changed the<br>on the other.<br>rect explana<br>correct exp | t derived d<br>medical pr<br>tion of (A)<br>lanation of | rugs, anaesthetics,<br>actice on one hand<br>(A). |
| 68.                            | Mat                                      | Ch the IC                                                            | ollowing                                                                    |                                                                                  |                                                                                          |                                                            |                                                   | List II                                                                      |                                                         |                                                   |
|                                | a)                                       | Bacter                                                               | ia arrano                                                                   | oed in a                                                                         | rhain                                                                                    |                                                            | D                                                 | List - II<br>Cocci                                                           |                                                         |                                                   |
|                                | b)                                       | Severa                                                               | l bacteri<br>arly for                                                       | ia are a<br>ning a                                                               | rranged<br>bunch                                                                         |                                                            | I)<br>II)                                         | Streptococ                                                                   | CUS                                                     |                                                   |
|                                | c)                                       | Bacter                                                               | ia are ar<br>gular fra                                                      | rangec<br>imes                                                                   | lin                                                                                      |                                                            | III)                                              | Staphyloco                                                                   | occus                                                   |                                                   |
|                                | d)                                       | Spheri                                                               | cal bact                                                                    | erium                                                                            |                                                                                          |                                                            | IV)                                               | Sarcina                                                                      |                                                         |                                                   |
|                                | The                                      | correct                                                              | answer                                                                      | is                                                                               | , a.                                                                                     |                                                            |                                                   |                                                                              |                                                         |                                                   |
|                                | (1)                                      | (a)                                                                  | (b)                                                                         | (c)                                                                              | (d)                                                                                      |                                                            |                                                   |                                                                              |                                                         |                                                   |
|                                | (1)                                      | Ш                                                                    | 1<br>т                                                                      | IV<br>T                                                                          | Ш<br>ж7                                                                                  |                                                            |                                                   |                                                                              |                                                         |                                                   |
|                                | (2)                                      | Ш<br>п                                                               | ш                                                                           | 1<br>107                                                                         | IV<br>T                                                                                  |                                                            |                                                   |                                                                              |                                                         |                                                   |
|                                | (3)                                      | Ш<br>Т                                                               | Ш<br>Т/                                                                     | тv<br>1V                                                                         | 1<br>П                                                                                   |                                                            |                                                   |                                                                              |                                                         |                                                   |
|                                | (4)                                      | 1                                                                    | IV                                                                          | ш                                                                                | ш                                                                                        |                                                            |                                                   |                                                                              |                                                         |                                                   |



| 69. | Mat                                                                                                                                                       | ch the f                              | ollowing                                 | g:                                     |                                                        |                                                     |                                                            |                             |                                                          |  |  |  |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------------------------------------------|----------------------------------------|--------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------|-----------------------------|----------------------------------------------------------|--|--|--|
|     |                                                                                                                                                           | List -                                | I                                        |                                        |                                                        | T                                                   | List - II                                                  |                             |                                                          |  |  |  |
|     | a)                                                                                                                                                        | Phyco                                 | mycetes                                  | 8                                      |                                                        | 1)                                                  | Alternaria                                                 |                             |                                                          |  |  |  |
|     | b)                                                                                                                                                        | Deute                                 | romyce                                   | tes                                    |                                                        | II)                                                 | Puccinia                                                   |                             |                                                          |  |  |  |
|     | c)                                                                                                                                                        | Basidi                                | iomycet                                  | es                                     |                                                        | III)                                                | Neurospore                                                 | а                           |                                                          |  |  |  |
|     | d)                                                                                                                                                        | Ascor                                 | nycetes                                  |                                        |                                                        | IV)                                                 | Albugo                                                     |                             |                                                          |  |  |  |
|     | The                                                                                                                                                       | correct                               | answer                                   | is                                     |                                                        |                                                     |                                                            |                             |                                                          |  |  |  |
|     |                                                                                                                                                           | (a)                                   | (b)                                      | (c)                                    | (d)                                                    |                                                     |                                                            |                             |                                                          |  |  |  |
|     | (1)                                                                                                                                                       | IV                                    | Ш                                        | Ι                                      | II                                                     |                                                     |                                                            |                             |                                                          |  |  |  |
|     | (2)                                                                                                                                                       | Ш                                     | II                                       | IV                                     | Ι                                                      |                                                     |                                                            |                             |                                                          |  |  |  |
|     | (3)                                                                                                                                                       | IV                                    | Ι                                        | II                                     | III                                                    |                                                     |                                                            |                             |                                                          |  |  |  |
|     | (4)                                                                                                                                                       | II                                    | IV                                       | Ι                                      | III                                                    |                                                     |                                                            |                             |                                                          |  |  |  |
| 70. | Whi                                                                                                                                                       | ch of th                              | e follow                                 | ving is i                              | responsible                                            | e for modify                                        | ing, sorting a                                             | und packa                   | iging of proteins                                        |  |  |  |
|     | (1)                                                                                                                                                       | Lysos                                 | omes                                     |                                        |                                                        | (2)                                                 | Endoplasmi                                                 | ic reticulu                 | ım                                                       |  |  |  |
|     | (3)                                                                                                                                                       | Golgi                                 | complex                                  | X                                      |                                                        | (4)                                                 | Ribosomes                                                  |                             |                                                          |  |  |  |
| 71. | Asso<br>Rea                                                                                                                                               | ertion (A<br>son (R)                  | A): Li<br>W<br>: Be                      | ipid sol<br>ater sol<br>ecause         | luble comp<br>luble comp<br>, membran                  | ounds pass<br>ounds.<br>e is made u                 | through the r                                              | nembran<br>vith highl       | e more easily than<br>y unsaturated and                  |  |  |  |
|     | (1)                                                                                                                                                       | Roth (                                | II<br>A) and (A)                         | ( <b>D</b> ) are                       | true and (I                                            | (1) is the cor                                      | s.<br>rect evolenet                                        | ion of $(\Lambda)$          | )                                                        |  |  |  |
|     | (1) Both (A) and (K) are true and (K) is the correct explanation of (A).<br>(2) Both (A) and (R) are true, but (R) is not the correct explanation of (A). |                                       |                                          |                                        |                                                        |                                                     |                                                            |                             |                                                          |  |  |  |
|     | (2)                                                                                                                                                       | $\Delta $                             | (A) allu (                               | $(\mathbf{R})$ are $t$ ( <b>D</b> ) is | folco                                                  | x) is not the                                       | confect expla                                              | anation 0                   | I (A).                                                   |  |  |  |
|     | (3)                                                                                                                                                       | (A) is                                | folco b                                  | $t(\mathbf{R})$ is $t(\mathbf{R})$ ;   | Taise.                                                 |                                                     |                                                            |                             |                                                          |  |  |  |
|     | (4)                                                                                                                                                       | (A) 15                                |                                          |                                        | s true.                                                |                                                     |                                                            |                             |                                                          |  |  |  |
| 72. | Nun                                                                                                                                                       | nber of j                             | polypep                                  | tides er                               | ncoded by l                                            | numan mito                                          | chondrial ger                                              | nome is                     |                                                          |  |  |  |
|     | (1)                                                                                                                                                       | 37                                    |                                          | (2)                                    | 22                                                     | (3)                                                 | 13                                                         | (4)                         | 2                                                        |  |  |  |
| 73. | Whi<br>syna<br>to se<br>(1)                                                                                                                               | ch one<br>aptonem<br>eparate<br>Pachy | of the fe<br>al comp<br>from eac<br>tene | ollowin<br>olex and<br>ch othe<br>(2)  | ng phases of<br>the tender<br>er except at<br>Zygotene | of Meiosis-<br>ncy of the ho<br>the sites of<br>(3) | I is recognise<br>omologous ch<br>crossovers.<br>Diplotene | ed by the<br>romosom<br>(4) | dissolution of the<br>les of the bivalents<br>Diakinesis |  |  |  |
| 74. | Mat                                                                                                                                                       | ch the fo                             | ollowing<br>I                            | g:                                     |                                                        |                                                     | List - II                                                  |                             |                                                          |  |  |  |
|     | a)                                                                                                                                                        | Hypog                                 | tomatic                                  |                                        |                                                        | D                                                   | Avena Sativ                                                | va (Oats)                   |                                                          |  |  |  |
|     | h)                                                                                                                                                        | Potato                                | type st                                  | omata                                  |                                                        | I)<br>II)                                           | Mustard                                                    | a (Outs)                    |                                                          |  |  |  |
|     | c)                                                                                                                                                        | Alfalf                                | a type st                                | omata                                  |                                                        | III)                                                | Mulberry                                                   |                             |                                                          |  |  |  |
|     | d)                                                                                                                                                        | Isosto                                | matic st                                 | omata                                  |                                                        | IV)                                                 | Tomato                                                     |                             |                                                          |  |  |  |
|     | The                                                                                                                                                       | correct                               | answer                                   | is                                     |                                                        | 1 ( )                                               | Tomato                                                     |                             |                                                          |  |  |  |
|     | 1110                                                                                                                                                      | (a)                                   | (h)                                      |                                        | (d)                                                    |                                                     |                                                            |                             |                                                          |  |  |  |
|     | (1)                                                                                                                                                       | П                                     | Π<br>Π                                   | ĪV                                     | I                                                      |                                                     |                                                            |                             |                                                          |  |  |  |
|     | (2)                                                                                                                                                       | Ш                                     | П                                        | T                                      | ĪV                                                     |                                                     |                                                            |                             |                                                          |  |  |  |
|     | (2)                                                                                                                                                       | TV                                    | T                                        | Π                                      | Ш                                                      |                                                     |                                                            |                             |                                                          |  |  |  |
|     | (J)                                                                                                                                                       | m                                     | T<br>TV                                  | п                                      | Т                                                      |                                                     |                                                            |                             |                                                          |  |  |  |
|     | 1411                                                                                                                                                      |                                       |                                          |                                        |                                                        |                                                     |                                                            |                             |                                                          |  |  |  |



| 75. | Seco       | ondary x                 | xylem an          | id phloe        | m in a d  | icot stem are  | produced by                               |
|-----|------------|--------------------------|-------------------|-----------------|-----------|----------------|-------------------------------------------|
|     | (1)        | Apical                   | l meriste         | ems             |           | (2)            | Vascular cambium                          |
|     | (3)        | Phello                   | gen               |                 |           | (4)            | Axillary meristems                        |
| 76. | Whi        | ich one                  | of the fo         | llowing         | g stateme | ents is correc | t?                                        |
|     | (1)        | Ovule                    | s are not         | enclose         | d by ova  | ary wall in gy | mnosperms                                 |
|     | (2)        | Selagi                   | <i>nella</i> is   | heteros         | porous,   | while salvini  | a is homosporous                          |
|     | (3)        | Horse                    | tails are         | gymnos          | sperms    |                | 1                                         |
|     | (4)        | Stems                    | are usua          | ally unb        | ranched   | in both Cyca   | s and Cedrus                              |
| 77. | The        | Indian A                 | Agricult          | ural Res        | earch In  | stitute, New   | Delhi has released:                       |
|     |            | List - II                |                   |                 |           |                |                                           |
|     | a)         | Vitam                    | in A enri         | ched            |           | I)             | Broad bean                                |
|     | b)         | Vitam                    | in C enri         | ched            |           | Ď              | Pumpkin                                   |
|     | c)         | Calciu                   | im enricl         | hed             |           |                | Ritter gourd                              |
|     | d)         | Protei                   | n enrich          | ed              |           | III)<br>IV)    | Spinach                                   |
|     | u)<br>The  | correct                  | answer            | is              |           | 1.             | Spinaen                                   |
|     | 1110       | (a)                      | (h)               | (c)             | (d)       |                |                                           |
|     | (1)        | П                        | IV                | I               | Щ<br>Ш    |                |                                           |
|     | (1)        | п                        | m                 | TV              | T         |                |                                           |
|     | (2)        | ш                        | Т                 | п               | Π<br>Π/   |                |                                           |
|     | (3)        |                          | I<br>П            | ш               | 1V<br>T   |                |                                           |
|     | (4)        | IV                       | Ш                 | Ш               | 1         |                |                                           |
| 78. | The        | e maxim                  | um volu           | ime of a        | ir a pers | on can breath  | he in after forced expiration is known as |
|     | (1)        | Functi                   | onal resi         | idual ca        | pacity    | (2)            | Total lung capacity                       |
|     | (3)        | Inspira                  | atory cap         | oacity          |           | (4)            | Vital capacity                            |
| 79. | Whi        | ECT' for 'Pigeon's Milk' |                   |                 |           |                |                                           |
|     | (1)        | It is co                 | mposed            | of wate         | er fat ca | sein and lact  | ose                                       |
|     | (2)        | It is nr                 | oduced            | by fema         | le nigeo  | n              |                                           |
|     | (2)<br>(3) | Prolac                   | tin horn          | none sti        | mulates   | its secretion  |                                           |
|     | (3)        | It will                  | he requir         | raitated        | to feed y | no secretion   | 10                                        |
|     | (+)        |                          | be regui          | gnateu          | to recu y |                |                                           |
| 80. | Mat        | ch the fo                | ollowing          | ;               | 、<br>、    |                |                                           |
|     |            | List - J                 | I ( <u>Placer</u> | <u>ita type</u> | )         |                | List - II ( <u>Animal</u> )               |
|     | a)         | Synde                    | smochoi           | rial            |           | 1)             | Humans                                    |
|     | b)         | Endot                    | heliocho          | orial           |           | II)            | Rabbits                                   |
|     | c)         | Haem                     | ochorial          |                 |           | III)           | Dogs                                      |
|     | d)         | Heam                     | oendothe          | elial           |           | IV)            | Camels                                    |
|     | The        | correct                  | answer            | is              |           | ,              |                                           |
|     | 1110       | (a)                      | (b)               | (c)             | (d)       |                |                                           |
|     | (1)        | IV                       | Π                 | ш<br>Ш          | I         |                |                                           |
|     | (1)        | T                        | Ш                 | т<br>Т/         | П         |                |                                           |
|     | (2)        | т<br>Т                   | ш                 | T               | п         |                |                                           |
|     |            | 11                       | ш                 | 1               | ш         |                |                                           |
|     | (J)        | π                        | π7                | т               | m         |                |                                           |



| 81. | Which of the following medical procedures are suggested when a woman cannot produce                              |                                                                                               |                      |           |             |                    |              |                      |        |                       |  |  |  |  |
|-----|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------|-----------|-------------|--------------------|--------------|----------------------|--------|-----------------------|--|--|--|--|
|     | viab                                                                                                             | le/fertil                                                                                     | le ova               |           | 117 1       | T                  | 6            |                      |        |                       |  |  |  |  |
|     | (1)                                                                                                              | In Viti                                                                                       | ro Fertili           | sation    | and Embry   | o Tran             | nster (      | IVF-ET)              |        |                       |  |  |  |  |
|     | <ul> <li>(2) Artificial Insemination (AI)</li> <li>(3) Zugota Introfallonian Transfer (ZIET)</li> </ul>          |                                                                                               |                      |           |             |                    |              |                      |        |                       |  |  |  |  |
|     | <ul> <li>(3) Zygote Intrafallopian Transfer (ZIFT)</li> <li>(4) Compte Intrafallopian Transfer (CIET)</li> </ul> |                                                                                               |                      |           |             |                    |              |                      |        |                       |  |  |  |  |
|     | (4)                                                                                                              | Game                                                                                          | te Intrata           | allopiai  | n Transfer  | (GIFI              | )            |                      |        |                       |  |  |  |  |
| 82. | pH 1                                                                                                             | ange of                                                                                       | f the gas            | tric juic | e in huma   | ins is             | ( <b>2</b> ) | 7 0                  | (4)    | 10 14                 |  |  |  |  |
|     | (1)                                                                                                              | 1 - 2                                                                                         |                      | (2)       | 4 - 6       |                    | (3)          | 7 - 9                | (4)    | 10 - 14               |  |  |  |  |
| 83. | The                                                                                                              | The region of the vertebrate eye where the optic nerve passes out of the retina is called the |                      |           |             |                    |              |                      |        |                       |  |  |  |  |
|     | (1)                                                                                                              | Fovea                                                                                         |                      | (2)       | Cornea      |                    | (3)          | Blind spot           | (4)    | Retina                |  |  |  |  |
| 84. | Mat                                                                                                              | ch the f                                                                                      | ollowing             | g:        |             |                    |              |                      |        |                       |  |  |  |  |
|     | a)                                                                                                               | Bolus                                                                                         |                      |           |             | I)                 | Prot         | ein deficiency       |        |                       |  |  |  |  |
|     | b)                                                                                                               | Amyla                                                                                         | ase                  |           |             | II)                | Saliv        | va                   |        |                       |  |  |  |  |
|     | c)                                                                                                               | Kwas                                                                                          | hiorkar              |           |             | III)               | Bile         | •                    |        |                       |  |  |  |  |
|     | d)                                                                                                               | Biliru                                                                                        | bin                  |           |             | IV)                | Poly         | ysaccharide          |        |                       |  |  |  |  |
|     | Cho                                                                                                              | ose the                                                                                       | correct              | answer    | •           |                    |              |                      |        |                       |  |  |  |  |
|     |                                                                                                                  | (a)                                                                                           | (b)                  | (c)       | (d)         |                    |              |                      |        |                       |  |  |  |  |
|     | (1)                                                                                                              | Π                                                                                             | Ι                    | Ш         | IV          |                    |              |                      |        |                       |  |  |  |  |
|     | (2)                                                                                                              | Ι                                                                                             | II                   | IV        | Ш           |                    |              |                      |        |                       |  |  |  |  |
|     | (3)                                                                                                              | Ι                                                                                             | III                  | Π         | IV          |                    |              |                      |        |                       |  |  |  |  |
|     | (4)                                                                                                              | II                                                                                            | IV                   | Ι         | III         |                    |              |                      |        |                       |  |  |  |  |
| 85. | The transparent lens in the human eye is held in its place by:                                                   |                                                                                               |                      |           |             |                    |              |                      |        |                       |  |  |  |  |
|     | (1) Ligaments attached to the ciliary body                                                                       |                                                                                               |                      |           |             |                    |              |                      |        |                       |  |  |  |  |
|     | (2)                                                                                                              | Ligan                                                                                         | nents atta           | ached t   | o the iris  |                    |              |                      |        |                       |  |  |  |  |
|     | (3)                                                                                                              | Smoo                                                                                          | th muse              | les atta  | ched to the | e iris             |              |                      |        |                       |  |  |  |  |
|     | (4)                                                                                                              | Rectu                                                                                         | s and ob             | lique n   | nuscles     |                    |              |                      |        |                       |  |  |  |  |
| 86. | An e                                                                                                             | example                                                                                       | e of lent            | ic ecos   | ystem is    |                    |              |                      |        |                       |  |  |  |  |
|     | (1)                                                                                                              | Rivers                                                                                        | 8                    | (2)       | Springs     |                    | (3)          | Estuary              | (4)    | Lakes                 |  |  |  |  |
| 87. | The functional role of an organism in an ecosystem is termed as                                                  |                                                                                               |                      |           |             |                    |              |                      |        |                       |  |  |  |  |
|     | (1)                                                                                                              | Edge                                                                                          | effect               |           |             |                    | (2)          | Ecotone              |        |                       |  |  |  |  |
|     | (3)                                                                                                              | Ecolo                                                                                         | gical Ni             | che       |             |                    | (4)          | Ecological py        | ramid  |                       |  |  |  |  |
| 88. | Wor                                                                                                              | ld Envi                                                                                       | ronment              | t day is  | observed    | on                 |              |                      |        |                       |  |  |  |  |
|     | (1)                                                                                                              | Febru                                                                                         | ary 10 <sup>th</sup> | (2)       | Septemb     | er 7 <sup>th</sup> | (3)          | June 5 <sup>th</sup> | (4)    | July 25 <sup>th</sup> |  |  |  |  |
| 89. | Green house gases are released into the environment and cause global warming. Identify                           |                                                                                               |                      |           |             |                    |              |                      |        |                       |  |  |  |  |
|     | one                                                                                                              | of the f                                                                                      | ollowing             | g gases   | which is r  | not a gi           | reen h       | ouse gas             |        |                       |  |  |  |  |
|     | (1) Sulpher dioxide (2) Methane                                                                                  |                                                                                               |                      |           |             |                    |              |                      |        |                       |  |  |  |  |
|     | (3)                                                                                                              | Carbo                                                                                         | on monoy             | kide      |             |                    | (4)          | Fluorochloro         | carbon | S                     |  |  |  |  |



90. Profundal zone is(1) Shallow part of the lake closer to the shore

- (2) An open water away from the shore
- (3) A zone effective of light penetration
- (4) The deep water area beyond the depth of effective light penetration
- 91. The following gas is responsible for protecting the humans from harmful ultraviolet rays (1) Oxygen (2)Ozone (3) Chlorine (4)Methane 92. How many pairs of contrasting characters were studied by Mendel in his experiment on Peas? (2) (1) 5 7 (3) 2 (4) 9 93. In sickle-cell anemia, the following point mutation is seen in beta globin polypeptide chains of haemoglobin. Glutamine is replaced in the 6th position by valine (1)Glutamine is replaced in the 6th position by alanine (2)Glutamic acid is replaced in the 6th position by valine (3) Glutamic acid is replaced in the 6th position by alanine (4)94. Trisomy is the condition in which an extra chromosome is added (1)(2)a chromosomal pair is added a chromosome is deleted a chromosome is replaced (3)(4)95. Disorders caused due to absence/excess of one/more chromosome. (1) Mendelian disorder (2)Multiple allelism (3) Dominance (4) Aneuploidy Biological relationship between parents and their children can be accurately determined by 96. DNA finger printing. Basis for DNA finger printing is (1) Chromatin structure (2)**Repetitive DNA** (3) Restriction and endonuclease polymorphism (4) RNA structure 97. Embryological support for evolution was proposed by: (1) Ernst Heckel (2) Karl Ernst Von Baer Alfred Wallace (3) (4)Charles Darwin The development of heart in birds and mammals is an example of 98. (2) Convergent evolution (1) Homology Adaptive radiation **Biogenetic** law (3) (4)Evolution of life forms driven by use and disuse of organs was proposed by 99. (1) Ernst Hackel (2) Thomas Maltus (3) Charles Darwin (4) Lamarck
- 100. Allopatric speciation occurs due to:
  - (1) Physiological barrier(3) Niche change
- (2) Geographical isolation
- (4) Genetic drift





SPACE FOR ROUGH WORK