Hall Ticket Number

Q.B.No. $ 4 6 4 3 2 1$	Q.B.No.	4	6	4	3	2	1
------------------------	---------	---	---	---	---	---	---

Booklet Code :

Marks : 100 Time : 120 minutes

Signature of the Candidate

Signature of the Invigilator

INSTRUCTIONS TO THE CANDIDATE

3TP1S

(Read the Instructions carefully before Answering)

- 1. Separate Optical Mark Reader (OMR) Answer Sheet is supplied to you along with Question Paper Booklet. Please read and follow the instructions on the OMR Answer Sheet for marking the responses and the required data.
- 2. The candidate should ensure that the Booklet Code printed on OMR Answer Sheet and Booklet Code supplied are same.
- 3. Immediately on opening the Question Paper Booklet by tearing off the paper seal, please check for (i) The same booklet code (A/B/C/D) on each page, (ii) Serial Number of the questions (1-100), (iii) The number of pages and (iv) Correct Printing. In case of any defect, please report to the invigilator and ask for replacement of booklet with same code within five minutes from the commencement of the test.
- 4. Electronic gadgets like Cell Phone, Calculator, Watches and Mathematical/Log Tables are not permitted into the examination hall.
- 5. **There will be** ¹/₄ **negative mark for every wrong answer.** If the response to the question is left blank without answering, there will be no penalty of negative mark for that question.
- 6. Using Blue/Black ball point pen to darken the appropriate circles of (1), (2), (3) or (4) in the OMR Answer Sheet corresponding to correct or the most appropriate answer to the concerned question number in the sheet. Darkening of more than one circle against any question automatically gets invalidated and will be treated as wrong answer.
- 7. Change of an answer is NOT allowed.
- 8. Rough work should be done only in the space provided in the Question Paper Booklet.
- 9. Return the OMR Answer Sheet and Question Paper Booklet to the invigilator before leaving the examination hall. Failure to return the OMR sheet and Question Paper Booklet is liable for criminal action.

This Booklet consists of 13 Pages for 100 Questions + 2 Pages of Rough Work + 1 Title Page i.e. Total 16 Pages.

SPACE FOR ROUGH WORK

3TP1S

Booklet Code A

Marks: 100

Instructions :

- i) Each question carries *one* mark and ¹/₄ negative mark for every wrong answer.
- ii) Choose the correct or most appropriate answer from the given options to the following questions and darken, with Blue/Black Ball Point Pen, the corresponding digit **1**, **2**, **3** or **4** in the circle pertaining to the question number concerned in the OMR Answer Sheet, separately supplied to you.

1. The displacement of particle moving along X-axis with respect to time is $x = at+bt^{2}$. the dimensions of <i>c</i> are								$e \text{ is } x = at + bt^2 - ct^3,$
	(1)	T ⁻³	(2)	LT^{-1}	(3)	LT ⁻³	(4)	LT ⁻²
2.	Whi	ch of the followi	ng ar	e not the unit	s of self in	nductance?		
	(1)	Weber/Ampere			(2)	Ohm-second		
	(3)	Joule-Ampere			(4)	Joule-Ampere	e^{-2}	
3.	The	dimensions of v	olume	(V), speed (v), force ((F) and mass de	ensity (p	o) respectively are
	(1)	$[V] = [M^0 L^3 T^0]$, [v]=	$[MLT^{-2}], [F]$	$= [ML^{-1}]$	$[-2], [\rho] = [ML^{-1}]$	$-3T^{0}$]	
	(2)	$[V] = [M^0 L^3 T^0]$, [v]=	$[M^0LT^{-1}], [F$	$] = [M^0LT]$	$^{-1}], [\rho] = [ML^{-2}]$	T]	
	(3)	$[V] = [M^0 L^3 T^0]$, [v]=	$[M^{-1}LT^{-1}], []$	F] = [MLT]	$^{-2}], [\rho] = [ML^{-3}]$	T^0]	
	(4)	$[V] = [M^0 L^3 T^0]$, [v]=	$[M^0LT^{-1}], [F$	[] = [MLT]	$[-2], [\rho] = [ML^{-3}]$	Г ⁰]	
4.	The and	percentage error 3%, respectively	in the The j	measuremen percentage er	t of resisti ror in the	vity, length and measurement o	radius (f resista	of a wire is 1%, 2% ance of the wire is
	(1)	9	(2)	6	(3)	8	(4)	10
5.	Atm	ospheric pressur	e at s	ea level is				
	(1)	$1.013 \times 10^{3} \text{ Pa}$	(2)	1.013 Pa	(3)	$1.013 \times 10^7 \mathrm{F}$	Pa (4)	1.013×10^5 Pa
6.	Whi	ch of the followi	ng is a	a sub-surface	e method o	of improving gr	ound w	vater level:
	(1)	Recharge wells			(2)	Percolation ta	ınk	
	(3)	Flooding			(4)	Stream augme	entatior	1
7.	Whi	ch of the followi	ng is	not a primary	green ho	ouse gas in earth	ns atmo	sphere?
	(1)	Carbon monox	ide		(2)	Methane		
	(3)	Water vapour			(4)	Ozone		
8.	Whi	ch of the follow	ing is	false with re	ference to	comets and as	teroid	:
	(1)	Both are celest	ral bo	dies orbiting	around St	un		
	(2)	Both have ellip	tical o	orbits				
	(3)	Asteroid consist organic compo	sts of a	metals and re	ocky mate	erial, while con	nets are	made up ice, dust
	(4)	Asteroid lose n	nateria	al when its g	ets closer	to Sun, while c	omets	are usually solid

9.	2. Choose the sequence containing correct match between left and right panels.										
		Left				<u>Right</u>					
	A)	The Sun, moon and all thos in the night sky	se objects sl	hining	g i)	Pole star					
	B)	Different groups of stars			ii)	Milky wa	У				
	Ć)	The North star which indic	ates north c	directi	on iii) Asteroids	5				
	D)	Numerous tiny bodies mov	ve around th	le Sun	iv	Celestial	bodies				
	E)	Our solar system is a part of	of galaxy		v)	Constella	tions				
	(1)	A-iv, B-v, C-i, D-i									
	(2)	A-iii, B-iv, C-i, D-v	v, E-ii								
	(3)	A-v, B-iii, C-ii, D-i	v, E-i								
	(4)	A-iv, B-iii, C-ii, D-v	v, E-i								
10.	An object 10 cm long is placed 20 cm in front of a concave mirror with focal length 40 cm. What is the height of the image?										
	(1)	100 cm (2) 20 c	m	(3)	30 cm	(4)	10 cm				
11.	The	terahertz radiation lies betw	een the way	veleng	th range	of :					
	(1)	100 µm to 1 mm		(2)	30 µm t	o 90 µm					
(3) $5 \mu\text{m}$ to 20 μm (4) 10 mm to 10 cm											
12.	In a ⁻¹ is 1 ⁻¹ cohe (1) (3)	Young's double slit experime . The wavelength of the lig prent sources? 3.58×10^{-5} m 2.5×10^{-5} m	ent the angu ht used is 6	(2) (4)	dth of a f A. What i 1.3×10 5.2×10	ringe formed s the distanc) ⁻⁵ m) ⁻⁵ m	on a distant screen e between the two				
10	(-)		1	•.	6.00.00		<u> </u>				
13.	A per temp whe steel (1)	berature was 45 °C. After sev re the temperature was 20 °C are $9.6 \times 10^{-4/\circ}$ C and 11×10^{-3} 38000 Liters (2) 3708	ed to its ca reral days of °C. If the c) ⁻⁶ /°C respe 88 Liters	pacity f trave oeffic ectivel (3)	l, the petr ient of v ly, the an 38912	00 liters in a ol was delive olume expan nount of petro Liters (4)	refinery when the ered at a destination asion of petrol and ol delivered is 37000 Liters				
14.	Cho	ose the option containing th	e incorrect	stater	nents me	ntioned belo	W.				
	A)	Water shown unusual expa	nsion when	n the te	emperatu	re goes from	0° C to 40° C and it				
		becomes less dense at 4°C	•								
	B)	If the density of a solid obj in, the object will sink.	ect is greate	er thar	the dens	sity of the liq	uid that it is placed				
	C)	Combustion is a reaction in	n which a su	ıbstan	ce reacts	with hydrog	en				
	D)	Calorimeter measures the	amount of l	neat in	volved in	n a process					
	(1)	(A), (B) and (C)		(2)	(C) and	(D)					
	(3)	(A) and (C)		(4)	(A) and	(B)					

15.	5. Choose the option showing correct match between left and right panels											
	• `	Left					• `	<u>Right</u>				
	A)	Solidif	ication				1)	solid \rightarrow	lıquıd			
	B)	Evapor	ration				ii)	solid \rightarrow	gas			
	C)	Sublin	nation				iii)	gas → li	quid			
	D)	Meltin	g				iv)	liquid →	→ gas			
	E)	Conde	nsation				V)	liquid –	Solid			
	(1)	A-ii,	B-v,	C-iv,	D-i,	E-iii	(2)	A-i,	B-iii,	C-v	v, D-ii,	E-iv
	(3)	A-v,	B-iv,	C-ii,	D-i,	E-iii	(4)	A-v,	B-iii,	C-:	i, D-iv,	E-ii
16.	Cons 0.7 n you v [use (1) (3)	sider a si n. If this s when yo speed of 245 Hz 163.3]	tuation v sets up a our ear cl of sound z and 12 Hz and 4	where ir fundam oses to l in air 2.5 Hz 490 Hz	n you list ental sta other end = 343 m	ten to the nding wa d of the t n/s]	e backg ave in t ube an (2) (4)	ground no he tube, w d when yo 122.5 H 122.5 H	ise in a h hat will t our ear is z and 24 z and 12	all us be the far av 15 Hz 22.5 H	ing a tube o frequency h way from th d Hz	f length heard by he tube?
17.	A m moto horn [use (1)	otor bik or bike g as hear : speed 917 Ha	te moving going at d by the of soun z	ng at 20 10 m/s rider b d = 340 (2)	0 m/s w s in the eing cha 0 m/s] 1200 F	ith its h same din ased? Iz	orn blarection (3)	owing (f n. What is 1094 Hz	= 1000 s the app z	Hz) i paren (4)	s chasing t frequency 1031 Hz	another y of the
18.	A so	und has	an inter	nsity 10)×10 ^{−8} V	V/m^2 . E	xpress	s this sour	nd level	in dB		
	(Ass	ume the	e thresho	old inte	nsity fo	r hearin	g is 10	-12 W/m^2	²)			
	(1)	100 dE	3	(2)	10 dB		(3)	50 dB		(4)	500 dB	
19.	A ca blow whic (1)	non is sl /s in a h ch the ba 30° aw	nooting norizont all trave	the ball al direc ls with (2)	vertical ction at reference 26.5°	ly down a speed ce to ver	at a sp of 30 tical d (3)	beed of 60 ms ⁻¹ . W irection. 35°) ms ^{–1} an hat is th	nd suc ne res (4)	ldenly stroi ultant dire 45.5°	ng wind ction at
20	Ifa	hall is d	Ironned	to fall	from th	e heigh	t of 80) m then	how lo	no it	takes to re	ach the
20.	grou	nd	nopped	to full	iioiii ui	e neight	. 01 00	,,	10 10	19 10		
	(1)	2 s		(2)	3 s		(3)	4 s		(4)	5 s	
21.	The up (1) (3)	principl nderstoo Kepler Newto	e of mo od from s' law o	mentur f motio and thi	n conse on rd laws	rvation i	(2)	process of Newton Newton	f collisio 's first a	on be nd se	tween part	icle can
		1,0,0,0					(1)	1.0 0 1011		o unu		
22.	An o	bject is	constrai	ned to 1	nove al	ong XZ	plane.	The force	$\vec{F} = -2$	$\hat{i} + 3\hat{j}$	$\hat{v} + 4\hat{k} N$ as	cting on
	it ma	akes the	object to	o move	a vector	r distanc	$e 5\hat{i} +$	$3k \mathrm{m}$, the	en the w	ork d	one by the	force is
	(1)	2 J		(2)	1 J		(3)	10 J		(4)	22 J	

- 23. The gravitational force with which you pull the earth is
 - (1) equal to the gravitational force with which the earth pulls you
 - (2) less than the gravitational force with which the earth pulls you
 - (3) greater than the gravitational force with which the earth pulls you
 - (4) zero
- 24. The orbital period of a planet, which orbits the Sun a distance R, given in terms of mass of the Sun M_s and universal gravitational constant G is

(1)
$$\left(\frac{4\pi}{GM_s}\right)R^2$$
 (2) $\left(\frac{4\pi^2}{GM_s}\right)R^3$ (3) $\frac{2\pi}{(GM_s)^{\frac{1}{2}}}R^{\frac{3}{2}}$ (4) $\frac{4\pi^2}{GM_s}R^{\frac{3}{2}}$
25. The commonly used material for shielding or screening magnetism is :
(1) Copper (2) Alluminium (3) Soft iron (4) Brass
26. A bar magnet of magnetic moment 2 Am² is free to rotate about a vertical axis through its centre. The magnet is released from rest from the east-west position. Find the change in the orientatranal energy of the magnet as it takes the North-South position. The horizontal component of the earth magnetic field is 25 μ T.
(1) 70 μ J (2) 50 μ J (3) 9 μ J (4) 40 μ J
27. Magnetic susceptibility of diamagnetic material is typically :
(1) 10⁻⁵ (2) -10⁻⁵ (3) 10⁵ (4) -10¹⁰

28. The horizontal component of the earth's magnetic field is 3.6×10^{-5} T where the dip is 60°. Find the magnitude of the earth's magnetic field. (1) 6.2×10^{-5} T (2) 4.5×10^{-5} T (3) 9.8×10^{-5} T (4) 7.2×10^{-5} T

- 29. The susceptibility of the material, when the Curie constant is 0.3 and the difference in critical temperature and paramagnetic Curie temperature is 0.02, is (All quanties in SI units)
 - (1) 1.5 (2) $\frac{1}{15}$ (3) 150 (4) 15
- 30. Two charges each of magnitude 'q' are located a distance 'd' from a charge 'Q' as shown. For the system to be in equilibrium, the value of charge 'Q' should be

31. Eight positive charges of equal magnitude 'q' are placed at the corner of a cube of side length '*a*'. If one charge is removed from the corner, then the magnitude of electric field at the centre of the cube is

(1)
$$\frac{7q}{4\pi\epsilon_0 a^2}$$
 (2) $\frac{7q}{\pi\epsilon_0 a^2}$ (3) $\frac{q}{3\pi\epsilon_0 a^2}$ (4) $\frac{q}{12\pi\epsilon_0 a^2}$

32. Find the energy dissipated in 5 min by an electric bulb with a filament of resistance of 500 Ω connected to a 240 V supply.
(1) 30,600 J
(2) 20,560 J
(3) 30,500 J
(4) 34,560 J

33. How many 40W bulbs can be safely connected in a parallel circuit which is drawing current through a 5A fuse from a 220V supply?

(1) 17 (2) 24 (3) 27 (4) 30

34. Few resistors are connected in series and parallel combination as shown in figure. The effective resistance between the points A and B is

35. If a long straight current carrying wire of radius '*a*' carries uniformly distributed current I, then the magnetic field at a radial distance r < a is

(1)
$$\frac{\mu_0 \mathbf{I}}{2\pi r}$$
 (2) $\frac{\mu_0 \mathbf{I}}{2\pi a}$ (3) $\frac{\mu_0 \mathbf{I} a}{2\pi r^2}$ (4) $\left(\frac{\mu_0 \mathbf{I}}{2\pi a^2}\right) r$

36. If a particle of charge 'q' moves with velocity v relative to an observer, the electric (Ē) and magnetic field (H) produced by the particle at the observer's location is
(r is the distance vector from the charge to the observer)

a

(r) is the distance vector from the charge to the observer)

(1)
$$\frac{q}{4\pi\epsilon_0 r^3}\overline{r}$$
 and $\frac{q}{4\pi r^3}(\vec{v}\times\overline{r})$
(2) $-\frac{q}{4\pi\epsilon_0}\overline{r}$ and $\frac{q}{4\pi}(\vec{v}\times\overline{r})$
(3) $-\frac{q}{4\pi\epsilon_0}\overline{r}$ and $-\frac{q}{4\pi}(\overline{r}+\vec{v})$
(4) $\frac{q}{4\pi\epsilon_0 r^2}\overline{r}$ and $\frac{q}{4\pi r^2}(\vec{v}\times\overline{r})$

37. A battery of emf ε and internal resistance, *r* is used in a circuit with a variable external resistance R. Find the value of R for which the power consumed in R is maximum. (1) r^2 (2) $2r^2$ (3) 2r (4) *r*

Booklet Code

38.	Rest mass energy of (1) 1.02 MeV	f an ele (2)	ectron is 0.511 MeV	(3)	0.511 keV	(4)	1.02 keV
39.	What is the waveler jumps from $n = \infty$ to	ing th of $n = 3$	the radiation er $(h = 6.63 \times 10^{-1})$	mitted ³ J-sec	when the electro	on in t	he hydrogen atom
	(1) ⁷⁹² nm	(2)	822 nm	(3)	854 nm	(4)	904 nm
40.	The kinetic energy of $(h = 6.63 \times 10^{-34} \text{ J-s})$	an elec ec)	ctron is 13.65 eV.	Calcul	ate its approxima	te de-E	Broglie wavelength.
	(1) $6.62 \times 10^{-10} \text{ m}$	(2)	3.32×10 ⁻¹⁰ m	(3)	4.82×10 ⁻¹⁰ m	(4)	2.62×10 ⁻¹⁰ m
41.	The half life of a ran remain after 40 hour	dioacti rs?	ve nuclide is 20) hours	. What fraction	of ori	ginal activity will
	(1) $\frac{1}{2}$	(2)	$\frac{1}{3}$	(3)	$\frac{1}{4}$	(4)	$\frac{1}{6}$
42.	 The half life time of a element Y. Initially t (1) Y will decay fa (2) X will decay fa (3) X and Y will decay fa (4) X and Y will decay 	a radio hey ha aster th aster th ecay at ecay at	active element '2 we same number an X an Y t the same rate at t the same rate in	X'is sai r of atc t all tin nitially	me as the mean l oms then : ne	ife of a	nother radioactive
43.	In the decay scheme $A \xrightarrow{P} A \xrightarrow{A} D + x$ the quantities x and y (n, v and p are respected)	+ y y are ectively	y neutron, photo	on and	proton)	(4)	a ⁺ and 11
		(2)		(3)		(4)	
44.	A $1\mu g$ sample of a rate the material remains	adioact	tive material cor	of the i	5×10 ¹⁴ nuclei. A material?	itter 48	s hours, $0.25 \mu g$ of
	(1) 24 hr.	(2)	12 hr.	(3)	4 hr.	(4)	92 hr.
45.	Which one among th (1) Transistor	ne follo (2)	owing is not an a Tunnel diode	active (3)	component of ar Vaccum tube	n electi (4)	ronic system? Inductor
46.	For the p-type silico (1) Holes are mind (2) Holes are majo (3) Electrons are r (4) Electrons are r	n whic ority ca ority ca ninorit najorit	ch of the followi arriers and trival arriers and trival by carriers and po y carriers and po	ng stat lent atc lent atc entava entava	ement is True. oms are the dopa oms are the dopa lent atoms are the lent atoms are the	ants ints ne dopa ne dopa	ants
47.	The conductivity of holes are $0.75 \text{ m}^2/\text{V}$ -	Si at 3 -sec an	$300 \text{ K is } 1.6 \times 10^{-3} \text{ M}^{-3}$	0 ⁻³ ohr , respe	$m^{-1} m^{-1}$ and the octively. Then the	mobil ⁱ e carri	ity of electron and er density of Si is

(1) $1.16 \times 10^{16} \text{ m}^{-3}$ (2) $1 \times 10^{16} \text{ m}^{-3}$ (3) $106 \times 10^{16} \text{ m}^{-3}$ (4) $10.6 \times 10^{16} \text{ m}^{-3}$

48.	Choose the sequence containing the True (T)-False (F) of the following statements.											
	A)	ISP m	neans Int	ternet Se	ervice Prot	cocol in	E-m	ail softwa	are	-		
	B)	FTP in	n file tra	insfer ap	oplication i	indicate	s Fil	e Transfe	r protoc	col		
	C)	HTM	L used in	n web se	ervices indi	icates hy	pert	ext mark	up langı	uage		
	D)	WWV	V indica	tes Wor	ld Wide W	/eb						
	(1)	T, T, T	Τ,Τ	(2)	T, F, T, T	((3)	F, F, T, T		(4)	F, T, T, 1	F
49.	A si	gnal of	20 kHz a	and peal	k voltage o	f 5V is r	nod	ulated wit	th a carr	rier fre	equency	of 2 MHz
	and	peak vo	oltage of	10V. Tł	nen the mo	dulation	ind	ex and sic	leband j	produ	ced are	
	(1)	2;20	kH and	20.2 kH	[z	((2)	0.5;2M	IHz and	12.2 N	ЛНz	
	(3)	0.5;1	820 kH	and 220	00 kHz	((4)	0.5 ; 198	30 kH ai	nd 20	20 kHz	
50.	Cho and	ose the their int	sequen teractior	ce cont n with th	aining cor e propagat	rect mating EM	tch wav	between o ves.	differen	nt laye	ers of at	nosphere
	A)	Tropo	sphere		i)	Helps	surf	ace wave	s and re	eflects	HF	
	B)	Strato	sphere		ii)	Efficie	ently	reflects	HF wav	ves, pa	articularl	y at night
	C)	Meso	sphere		iii)	Allow	VH	F up to se	veral G	Hz		
	D) Thermosphere iv) Partially absorbs HF waves yet allowing them to										g them to	
	reach ionospheric layer F ₂											-
	(1)	A-iv,	B-iii,	C-ii,	D-i		(2)	A-iii,	B-i,	C-i	v, D-ii	ĺ
	(3)	A-ii,	B-i,	C-iii,	D-iv		(4)	A-iii,	B-iv,	C-i	i, D-i	
51.	Whi	ch of th	ne follov	wing sta	tement(s)	is/are co	orree	ct?				
	A)	Chem	ical prop	perties o	f a substan	ce do no	ot ch	ange with	the cha	inge o	f its phys	ical state.
	B)	Rate of	of chemi	ical reac	tions do n	ot deper	nd uj	pon the pl	nysical	state	of a subs	tance.
	C)	Activation State of Activation	ation en of a subs	ergy inv stance.	volved in a	chemic	al re	eaction do	o not de	pend	upon the	e physical
	D)	The f intern	orce ac	ting bei ir force.	tween two	o "H" at	tom	s in a H ₂	molec	ule is	s an exa	mple for
	(1)	A, B,	С	(2)	A, D, C	((3)	А		(4)	A, D	
52.	The	critical	l pressu	re (atm)	critical m	nolar vo	lum	e (dm ³) a	nd criti	ical te	emperatu	re (K) of
	CO_2	respec	tively ar	re								
	(1)	79, 94	4.6×10^{-2}	2 and 30	4.2	((2)	73.9, 95	$.6 \times 10^{-3}$	³ and	304.1	
	(3)	94, 73	3.6×10^{-3}	3 and 31	4.2	((4)	72.8, 94	.6×10 ⁻⁴	¹ and	314.2	
53.	Ord	er the fo	ollowing	g substa	nces in the	e order o	of th	eir increa	sing mo	olar v	olume (F	lint : The
	volu	me of l	N_2 at T_c	and P _c is	$s 0.09 dm^3$	mol ⁻¹)						
	A)	CO_2 a	$t > T_c ar$	$nd < P_c$								
	B)	H_2Oa	$t < T_c ar$	nd P _c								
	C)	N_2 at T_2	$\Gamma_{\rm c}$ and $P_{\rm c}$	с								
	(1)	CO ₂ <	$< N_2 <$	H_2O		((2)	$N_2 < H$	$_{2}O < O$	CO_2		
	(3)	H ₂ O	$< N_2 < 0$	CO_2		((4)	$H_2O < O$	$CO_2 \simeq 1$	N_2		

Booklet Code

3TP1S

Which of the following is wrong for the above representation?

- (1) NH_3 and CH_4 at moderate pressure obey Boyle's law.
- (2) At extremely low pressures, all the given gases obey Boyle's law.
- (3) The compressability factor for He is greater than one at high pressure.
- (4) Gases that can be liquefied easily show more deviation from ideal behavior.

55. Which of the following reactions are possible?

a)
$$2 \operatorname{NaFeO}_2 + H_2O \longrightarrow 2 \operatorname{NaOH} + \operatorname{Fe}_2O_3$$

b)
$$\operatorname{Na_2CO_3} + \operatorname{Ca(OH)_2} \rightleftharpoons \operatorname{CaCO_3} + 2\operatorname{NaOH}$$

- c) $2 \operatorname{Na} \cdot \operatorname{Hg} + 2 \operatorname{H}_2 O \longrightarrow 2 \operatorname{NaOH} + 2 \operatorname{Hg} + \operatorname{H}_2 \uparrow$
- d) $2 \operatorname{Na} + \operatorname{O}_2(\operatorname{excess}) \xrightarrow{350^{\circ} \mathrm{C}} 2 \operatorname{NaOH} + \mathrm{H}_2\mathrm{O}$
- (1) (a), (b), (c), (d) (2) (b), (c), (d)
- (3) (a), (b), (c) (4) (a), (c), (d)
- 56. Which of the following indicators would you prefer for the titration of a weak acid and strong base?

Methyl Red

- (1) Methyl Orange (2)
- (3) Phenolphalein (4) Bromo oresol green
- 57. Which is not correct for plaster of paris?
 - (1) Plaster of paris is calcium sulphate hemihydrate.
 - (2) The setting process of plaster of paris is endothermic.
 - (3) Gypsum on heating at 120°C, gives plaster of paris.
 - (4) When plaster of paris heated at 200°C, forms Dead burnt plaster.
- 58. Which of the following are not chemical changes?
 - i) Souring of milk

(1)

- ii) Ripening of fruits
- iii) Expansion of metal on heating
- iv) Liquification of gases to liquids
 - (i), (ii) (2) (i), (iii) (3) (ii), (iv) (4) (iii), (iv)

Booklet Code

59.	Mat	ch the foll List - I	owing:							List	- II
	A)	Mixture	of sodi	um et	hanoate + s	soda lir	ne _	$\xrightarrow{\text{Heat}}$	i)	H_2S	
	B)	Conc.H ₂	$SO_4 + I$	NaCl	\longrightarrow				ii)	Cl_2	
	C)	Conc.HC	Cl + Mr	nO_2	>				iii)	CH_4	
	D)	dil.HCl -	+ FeS	\longrightarrow					iv)	HCl	
	(1) (3)	A-iii A-iii	B-iv B-iv	C-ii C-i	D-i D-ii		(2) (4)	A-ii A-iv	B-iii B-iii	C-i C-i	i D-iv i D-i
60.	The (1)	concentra 4	tion of	H ⁺ io (2)	n in a samp 3	ple of p	lant (3)	extract is 2	10 ⁻⁴ M	. Wha (4)	t is its pH ? 12
61.	Con mole	sider reactes of Cu(N	tion of NO ₃) ₂ fo	one n ormed	nole of Cu	with di e and c	lute a	and conce ntrated H	entrated NO ₃ res	HNC specti	$\overline{\mathbf{D}_{3}}$. The number of vely are,
	(1)	$\frac{1}{3}$ and 1	-	(2)	1 and $\frac{1}{3}$		(3)	1 and 1		(4)	3 and 3
62.	Oxio nitra	dation stat tes is,	e of Fe	in the	brown col	ored co	omple	ex formed	l during	g "Bro	wn Ring Test" for
	(1)	+ 3		(2)	+ 2		(3)	+ 1		(4)	Both +3 and +2
63.	Whi	ch of the f	followi	ng suł	ostances ca	nnot ur	nderg	o disprop	ortiona	tion r	eaction?
	(1)	PbO		(2)	Pb ₃ O ₄		(3)	PbO ₂		(4)	$Pb(NO_3)_2$
64.	100 Nas	mL of 1N	A solut	ion K volum	₂ Cr ₂ O ₇ in a	acidic 1	medi	um was t to comple	itrated	again act Ka	st 1M solution of Cr_2O_7 ?
	(1)	33.3 mL		(2)	300 mL	31094	(3)	100 mL		(4)	200 mL
65.	Whi	ch statem	ent is n	ot tru	e about ph	otoelec	tric e	effect?			
	(1)	Photoele	ectric ef	ffect i	s common	in met	als of	f low ion	isation	energ	у.
	(2)	Radiatio	n with	thresh	old freque	ncy car	n ejec	t electron	IS.		access the number
	(3)	of electr	ons	intens	ary of the f	auratio	11 01 7	a given n	equenc	y mei	eases the number
	(4)	The kine of freque	tic ener ency of	gy of t the ir	he emitted icident radi	electron	ns deo	creases wi	th the ir	ncreas	e of the magnitude
66.	Iden	tify the ele	ectroma	agneti	c radiation	with lo	onges	t waveler	igth.		
	(1)	Radiowa	ves	(2)	Visible		(3)	Infrared		(4)	Microwave
67.	The	velocity o	of an ele	ectron	is 3.2×10^8	cm s ⁻¹	. its v	waveleng	th is ap	proxii	mately
	(Ele)	ctron mas 1.173 Å	s = 9.1	(2)	°g) 2.27 Å		(3)	3.0 Å		(4)	4.37 Å

00.	(1)	Electr	ons are c	consid	ered as part	icles re	evolv	ving in a d	lefinite o	orbits		
	(2)	Δx is	inversive	ely pro	portional Δ	D.		0				
	(3)	Applic	cable to	micros	scopic parti	cles						
	(4)	$\Delta x. \Delta$	p is cons	tant								
69.	Mat	ch the fo	ollowing									
		List - I	I				Lis	st - II				
	A)	Princi	ple quan	tum ni	umber (n)	i) Finer lines of spectrum further split up						
	B)	Angul	ar quantı	um nui	nber (l)	ii)	Av nu	erage dis cleus	stance o	f eleo	ctron cloud from	
	C)	Magne	etic quan	ton nu	mber(m)	iii)	Nu	umber of s	sub shell	ls		
	(1)	A-ii	B-i	C-ii	i		(2)	A-i	B-ii	C-ii	i	
	(3)	A-iii	B-i	C-ii			(4)	A-ii	B-iii	C-i	l	
70.	Whi	ch is co	rrect acc	cording	g to Auffba	u princ	iple?)				
	(1)	4s wil	l be fille	d befo	ore 3p	-	(2)	3d will b	be filled	befor	re 4p	
	(3)	6p wil	l be fille	ed befo	ore 5d		(4)	6d will l	be filled	befo	re 5f	
71. According to Hund's rule, the correct electronic configuration										carbo	n is	
	(4)		2 s	2 p	•							
	(1)	[He]		<u> </u>	<u> </u>							
	(2)	[He]	$\frac{T \downarrow}{\bullet \downarrow}$		↓							
	(3)		$\frac{T\Psi}{\Phi I}$	<u> </u>	<u></u>							
	(4)	[ne]	<u> </u>									
72.	Wha	at are " <i>n</i>	" and " <i>l</i> "	value	s respective	ly, for	an el	ectron in f	5p orbita	ul?		
	(1)	4,0		(2)	5, 1		(3)	3, 2		(4)	4, 1	
73.	The	filling o	of 4p sub	olevel	starts for the	e elem	ent w	vith atomi	c numbe	er		
	(1)	31		(2)	29		(3)	19		(4)	35	
74.	The	correct	ground	state e	lectronic co	onfigui	atior	n of Cu is				
	(1)	[Ar] 3	$d^9 4s^2$			C C	(2)	[Ar] 4d ¹	$^{0}5s^{1}$			
	(3)	[Ar] 3	$d^{10} 4s^0$				(4)	[Ar] 3d ¹	$^{0}4s^{1}$			
75.	Whi	ch of th	e follow	ing ca	tions has the	e highe	est po	larizing p	ower?			
	(1)	Na ⁺		(2)	Ca ²⁺		(3)	Mg ²⁺		(4)	Al^{3+}	
76.	The	elemen	ts which	occup	y the peaks	of ato	mic v	volume cu	irve are			
	(1)	Fe, Co	o, Ni	(2)	Cl, Br, I		(3)	Ne, Ar, I	Kr	(4)	Na, K, Cs	
77.	The	electron	negativit	y of th	ne following	g elem	ents i	increases	in the o	rder		
	(1)	C, N, S	Si, P	(2)	N, Si, C, I	2	(3)	Si, P, C,	Ν	(4)	P, Si, N, C	

68. Which one of the below is not true about Heisenberg uncertainty principle?

78.	The first ionization enthalpy of Na, Mg, A (1) Na $<$ Mg $>$ Al $<$ Si (3) Na $<$ Mg $<$ Al $>$ Si	1 and 8 (2) (4)	Si are in the order Na > Mg > Al > Si Na > Mg > Al < Si
79.	The bromine atom differs from the bromid(1) number of protons(3) number of electrons	le ion i (2) (4)	in the number of neutrons number of protons and neutrons
80.	 Which one among the below statements is (1) Electrons and nuclei repel each other (2) Nuclei attract each other (3) In general, the noble gases are chemi (4) During the course of chemical comb their outermost energy level 	correct cally a pinatio	ct? active on, atoms try to attain 2 or 8 electrons in
81.	The ion with pseudonoble gas configuration (1) Ag ⁺ (2) Fe ⁺³	n is (3)	Cr^{+2} (4) Ti^{+2}
82.	 In SiO₂, the electronic configurations of Si (1) Chlorine and Sodium (3) Chlorine and Sodium ion 	i and C (2) (4)	D atoms respectively, are Sulphur and Fluorine Argon and Neon
83.	Linear shaped compounds are (1) CO_2 , SO_2 (2) XeF_2 , NO_2	(3)	SO_2, NO_2 (4) XeF_2, CO_2
84.	Identify the one that exhibits intramolecula(1) Acetic acid(3) ortho-hydroxybenzaldehyde	(2) (4)	ogen bonding. Phenol para-hydroxybenzaldehyde
85.	Hybridization of COCl_2 , BCl_3 , NH_3 and H_2 (1) sp ² , sp ² , sp ³ , sp ³ (3) sp, sp ² , sp ² , sp ³	(2) (2) (4)	spectively are sp ² , sp ² , sp ³ , sp ² sp ² , sp ² , sp ² , sp ²
86.	Number of constitutional isomers of alkan (1) 3 (2) 2	e with (3)	$\begin{array}{c} \text{formula } C_6 H_{14} \text{ is} \\ 5 \qquad (4) 10 \end{array}$
87.	According to IUPAC nomenclature, isopre (1) 1, 3 - butadiene (3) 2 - methyl - 1,3 - butadiene	ene is s (2) (4)	same as 2 - methyl but-2-ene 1, 3 - dimethylbutadiene
88.	The nitric acid, in the process of generatio(1) a base(2) an acid	n of ni (3)	itronium ion, acts as a catalyst (4) a solvent
89.	The hydrocarbon on heating with acidified hydrocarbon is (1) butene (3) 2-methylpropene	(2) (4)	nO ₄ gives butanone, CO ₂ and water. The 2, 3-dimethyl-1-butene 2-methyl-1-butene

90. The major product formed in the reaction of propene with HBr in the presence of peroxide involves the intermediate

92. A is treated with H_2SO_4 in the presence of Hg^{2+} to get $B(C_4H_8O)$. When B is treated with NaOH and I₂ gives a yellow precipitate. A and B are respectively

(4)

- (1) C_2H_2 and $CH_3CH_2CH_2CHO$
- (2) $CH_3 C \equiv CH \text{ and } C_2H_5 C CH_3$
- (3) $CH_3 C \equiv C CH_3$ and $CH_3 CH_2 CH_2 CHO$
- (4) $C_2H_5C \equiv C-H \text{ and } C_2H_5-C-CH_3$

93. Cyclo heptatrienyl cation is

(3)

(1)

- (1) benzenoid and aromatic
- (3) non-benzenoid and antiaromatic
- (2) non-benzenoid and aromatic
- (4) non-benzenoid and non-aromatic
- 94. The major pyrimidines found in DNA are

Thymine and cytosine

- (2) Uracil and cytosine
- (3) Adenine and cytosine (4) Guanine and cytosine
- 95. The copolymer derived from glycine and aminocaproic acid is (1) Nylon - 2, 2 (2) Nylon - 2, 6 (3) Nylon - 6, 6 (4) Nylon - 6
- 96. From below, which statement is not correct about carbon monoxide (CO)?
 - (1) CO is very toxic at the levels usually found in the atmosphere.
 - (2) CO strongly binds to hemoglobin
 - (3) Treatment of CO poisoning is inhalation of pure oxygen
 - (4) CO is colorless and tasteless gas

97.	7. Identify the products X and Y of the below reactions relating t										
	Sulp	ohur cont	taining o	rganic co	ompound		ecompositi	$\xrightarrow{\text{on}} X$ \downarrow \downarrow Y	X_{2} O_{2} X_{2} H_{2} O_{2}		
		Х		Y				1	1120		
	(1)	RSH		SO_3							
	(2)	RSH		SO ₂							
	(3)	H_2S		SO_3							
	(4)	H_2S		SO ₂							
98.	Mat	ch the fo	ollowing	:							
		List - I					List - II				
	A)	Magne	etite			i)	Mg				
	B)	Argent	tite			ii)	Zn				
	C)	Magne	esite			iii)	Fe				
	D)	Calam	ine			iv)	Ag				
	(1)	A-i,	B-ii,	C-iv,	D-iii	(2)	A-iii,	B-iv,	C-i,	D-ii	
	(3)	A-iii,	B-iv,	C-ii,	D-i	(4)	A-iv,	B-ii,	C-iii,	D-i	
99.	Mat	ch the fo	ollowing								
		List - I					List - II				
	A)	Al_2O_3	•2H ₂ O	Heat	>	i)	Smelting	2			
	B)	2 ZnS	+ 30 ₂ -	$\xrightarrow{\text{Heat}}$		ii)	Self red	uction			
	C)	PbO+	C Hea	$\xrightarrow{at} Pb +$	СО	iii)	Roasting	5			
		PbO+	CO_H	$\xrightarrow{\text{leat}} Pb$	$+ CO_2$						
	D)	2PbS	+30 ₂ -	$\longrightarrow 2 Pb$	$O + 2SO_2$	iv)	Calcinat	ion			
		2PbO	+ PbS –	—→3Pt	$+SO_2$						
	(1)	A-iii,	B-i,	C-iv,	D-ii	(2)	A-ii,	B-iii,	C-iv,	D-i	
	(3)	A-i,	B-ii,	C-iii,	D-iv	(4)	A-iv,	B-iii,	C-i,	D-ii	
100	Wh	ich one o	mong th	a balow	anaratas raf	ined nu	ro motol x	via the fo	ormation	its Tatraha	adra

100. Which one among the below generates refined pure metal via the formation its Tetrahedral carbonyl complex?

(1)	Electrolytic refining	(2)	Poling
(2)	Mand'a magaza	(A)	Von Antral measure

(3) Mond's process (4) Van Arkel process

SPACE FOR ROUGH WORK