

Geometry

- 1. Polygon: Two types of angle
 - i. Exterior
 - ii. Interior

i. Exterior Angle: Sum of exterior Angle of the polygon is 360°,

If the polygon is regular polygon then each exterior angle is $\frac{360^{\circ}}{n}$, where 'n' is number of sides. **ii. Interior Angle**: Sum of the interior angle of the polygon is $(n - 2) \times 180$.

If the polygon is regular polygon then each interior angle is equal to $\frac{(n-2)180}{n}$

Number of diagonals of the polygon = $\frac{n \times (n-3)}{2}$

2. Vertical opposite angle always be same

$$2 \xrightarrow{1}{4}$$

-: $\angle 1 = \angle 3$ and $\angle 1 + \angle 2 = 180^{\circ}$
-: $\angle 2 = \angle 4$ and $\angle 3 + \angle 4 = 180^{\circ}$

3. Corresponding angles: $(4 + \sqrt{5} - 100^{\circ})$

4. Sum of 2 interior angle opposite to exterior angle

8 Months Subscription

Live Classes, Video Courses, Test Series, e-Books

Bilingual

5. In the given fig. AB = AC, then AD which is median of the triangle also be height of triangle

> In the given fig. ABCD is a cyclic quadrilateral.

 $\angle A + \angle C = 180^{\circ}$ (opp. Angle)

$$\angle B + \angle D = 180^{\circ}$$

 \Rightarrow opposite interior angle is equal to exterior angle.

> Centres of the triangle:

- Type of centres:
- (1) Centroid
- (2) Incentre
- (3) Circum-centre
- (4) Ortho centre

(1) Centroid: Intersecting points of the medians of triangle is known as centroid of the triangle.

OHERS

Area of \triangle ABD = \triangle ACD AG : GD = 2 : 1 Area of \triangle BGC = \triangle AGC = \triangle AGB Area of \triangle nzGY : \triangle ABC 2 : 36 1 : 18

such that PS = 27 cm. The length of PO is

Example: PS is the median of a triangle PQR and O is centroid

Sol. PS is the median and O is the centroid ----- (given)

5 Full Length Mocks

Ratio of PO : OS

PS = 27 cm

2

(2) Incentre: Intersecting points of angle bisector of triangle is known as Incentre of the triangle

AO = OB = OC = Radius $\angle BOC = 2 (\angle BAC)$

In right $\angle \Delta$ circum-centre is formed on the mid-point of hypotenuse.

circum-circle radius (R) = $\frac{AbC (sides)}{4 \times area of \Delta}$

(4) Ortho-centre: intersecting points of the altitudes of triangle is known as orthocentre of the triangle

 $= 111^{\circ}$

Some important facts of the triangle:

i. **Mid-Point Theorem:** In triangle ABC, P and Q are mid – point of AB and AC. Then PQ always || to BC (PQ || BC).

ii. Median theorem: In Δ ABC, AD is Median

Example: If the length of the three sides of a triangle is a 9 cm, 40 cm, and 41 cm then find the length of median to its greatest side. **Sol.** This is a right-angled triangle

addazyj

In Right angle triangle medians divide the hypotenuse in 2 equal parts So, BD = $\frac{H}{2} \Rightarrow \frac{41}{2} = 20.5 \ cm$

iii. Angle bisector theorem: Internal angle bisector

5

6

In the right Triangle ABC, F and D is the mid – points of AB and BC TEACHING TEST PACK

12 Months Subscription

Bilingual

