

ATOMIC ENERGY EDUCATION SOCIETY

Anushaktinagar, Mumbai-400 094

2015 - Open Candidates Examination

Post - PGT (Mathematics)
Time - 1 Hour 30 Minutes

Date - 27.09.2015

Maximum Marks - 50

Instructions

- 1. There are 50 Multiple Choice Questions (MCQ) in this paper. Each question carries 1 mark. There will be negative marking of 0.25 per wrong answer.
- 2. Answer should be darkened/marked in the OMR answer sheet only.
- 3. Use of any electronic gadget (e.g. calculator, mobile phone, etc.) is not permitted, in the examination hall.
- 4. In case a candidate has not signed the Attendance Sheet or the OMR Answer Sheet is not signed by the Invigilator, it will be dealt with as a case of unfair means.
- 5. On completion of the test, the candidates MUST HAND OVER THE OMR ANSWER SHEET AND QUESTION PAPER TO THE INVIGILATOR in the room/hall.
- 6. The candidates should ensure that the OMR answer sheet is not folded or damaged.

To be filled by the candidate	
Name of the Candidate:	
Roll Number:	
OMR Number:	

2015-Open Candidates- PGT (Mathematics) - QP

Q.1 Equivalent matrices are obtained by:

a) taking inverse

	c) taking adjoints	(d) taking finite number of elementary transformations
Q.2	In a homogenous system $\rho(A)$ < the real (a) only trivial solution (c) only non-trivial solutions	number of unknowns then the system has: (b) trivial solution and infinitely many solutions (d) no solution
Q.3	Let \overrightarrow{u} , \overrightarrow{v} and \overrightarrow{w} be vectors such that $\left \overrightarrow{v} \right = 5 \text{ then } \overrightarrow{u} \cdot \overrightarrow{v} + \overrightarrow{v} \cdot \overrightarrow{w} + \overrightarrow{w} \cdot \overrightarrow{u} :$ (a) 25 (c) 5	$t \xrightarrow{u} + \xrightarrow{v} + \xrightarrow{w} = \xrightarrow{0} . f \xrightarrow{u} = 3, f = 4 \text{ and}$ (b) -25 (d) $\sqrt{5}$
Q.4	The equation of the tangent to the curv (a) $x - 10y + 50 = 0$ (c) $x + 3y - 4 = 0$	ye $y = x^3$ at $(1,1)$: (b) $3x - y - 2 = 0$ (d) $x + 2y - 7 = 0$
Q.5	If $Z_1 = a + ib$, $Z_2 = -a + ib$ then Z_2 (a) real axis (c) the line $y = x$	$Z_1 - Z_2$ lies on: (b) imaginary axis (d) the line $y = -x$
Q.6	A matrix of order 3 X 3 has determina (a) 36 (c) 108	nt. The value of 3A : (b) 12 (d) 432
Q.7	 Which of the following statement is in (a) Initial velocity means velocity a (b) Initial acceleration means accel (c) If the motion is upward, at the s (d) If the motion is horizontal v = 	at $t = 0$ eration at $t = 0$ ame maximum height, the velocity is not zero.
Q.8	The value of $\int_0^{\pi} \sin^4 x \ dx$:	
	$(a) \frac{3\pi}{16}$	(b) $\frac{3}{16}$
	(c) 0	$(d)\frac{3\pi}{8}$

(b) taking transposes

Q.9 The differential equation of the family of lines y = mx:

$$(a) \frac{dy}{dx} = m$$

(b)
$$y dx - x dy = 0$$

$$(c)\frac{d^2y}{dx^2} = 0$$

$$(d) y dx + x dy = 0$$

- Q.10 If $u = \sin^{-1}(\frac{x^4 + y^4}{x^2 + y^2})$ and $f = \sin u$ then f is a homogenous function of degree
 - (a) 0

(b) 1

(c) 2

- (d) 4
- Q.11 The curve $ay^2 = x^2 (3a x)$ cuts the y axis at:

(a)
$$x = -3a$$
, $x = 0$,

(b)
$$x = 0$$
, $x = 3a$

(c)
$$x = 0, x = a$$

$$(d) x = 0$$

Q.12 Which of the following curve is concave down?

(a)
$$y = -x^2$$

(b)
$$y = x^2$$

(c)
$$y = e^x$$

(d)
$$y = x^2 + 2x - 3$$

Q.13 The length of the semi major and length of the minor axis of the ellipse

$$\frac{x^2}{144} + \frac{y^2}{169} = 1$$
 are:

Q.14 The function $f(x) = x^2 - 5x + 4$ is increasing in:

(c)
$$(4, \infty)$$

Q.15 A particular integral of $(D^2 - 4D + 4)y = e^{2x}$ is:

(a)
$$\frac{x^2}{2} e^{2x}$$

(b)
$$xe^{2x}$$

(c)
$$xe^{-2x}$$

(d)
$$\frac{x}{2} e^{-2x}$$

Q.16 If 2 cards are drawn from a well shuffled pack of 52 cards, the probability that they are of the same colour is:

(a)
$$\frac{1}{2}$$

(b)
$$\frac{26}{51}$$

(c)
$$\frac{25}{51}$$

(d)
$$\frac{25}{102}$$

Q.17	If x is normally distributed v corresponding normal variate. The (a) $P(-1.2 < z < .04)$ (c) $P(-1.2 < z < 0.4)$	(b) $P(-0.12 < z < .4)$
Q.18	$(1+i\sqrt{3})^{n} + (1-i\sqrt{3})^{n}:$	(d) $P(-0.12 < 2 < .04)$
	(a) $2^{n+1} \cos \frac{n\pi}{3}$	(b) $2^{n+1} \sin \frac{n\pi}{3}$
	(c) $2^{n-1} \cos \frac{n\pi}{3}$	(d) $2^{n-1} \sin \frac{n\pi}{3}$
Q.19	If $A=[2 \ 0 \ 1]$, then rank of AA	
	(a) 1 (c) 3	(b) 2 (d) 0
Q.20	The value of 'c' on Rolle's Theo	for the function $f(x) = \cos \frac{x}{2}$ on $[\pi, 3\pi]$
	(a) 0	(b) 2π
	(c) $\frac{\pi}{2}$	(d) $\frac{3\pi}{2}$
Q.21	For any vector \overrightarrow{a} , $\overrightarrow{i} \times (\overrightarrow{a} \times \overrightarrow{i}) + \overrightarrow{a}$	$-\vec{j} \times (\vec{a} \times \vec{j}) + \vec{k} \times (\vec{a} \times \vec{k})$ is:
	(a) 2 1	(b) $2\vec{j}$
	(c) $2\vec{k}$	(d) $2\vec{a}$
Q.22	An asymptote to the curve y^2 (a	
	(a) $x = 3a$	(b) $x = -\frac{a}{2}$
	(c) $x = \frac{a}{2}$	(d) $x = 0$
Q.23	In the set of real numbers R , as value of $(3 * 4) * 5$:	n operation * is defined by $a * b = \sqrt{a^2 + b^2}$. Then the
	(a) 5	(b) $5\sqrt{2}$
	(c) 25	(d) 50
Q.24	The two positive numbers whose (a) 20,5	e product is 100 and whose sum is minimum: (b) 10,10
	(c) 4, 25	(d) 2, 50

- The Cartesian equation of the plane passing through the points (2,2,-1), (3,4,2) and (7,0,6) is:
 - (a) 5x + 2y 3z = 17
- (b) 5x + 3y 2z = 17
- (c) 2x + 5y 3z = 17
- (d) -3x + 5y + 2z = 17
- Q.26 The centre and radius of the sphere $|2\vec{r} + (3\vec{i} \vec{j} + 4\vec{k})| = 4$:

 - (a) centre= $(\frac{3}{2}, \frac{-1}{2}, 2)$ and radius=2 (b) centre= $(\frac{-3}{2}, \frac{1}{2}, -2)$ and radius=2

 - (c) centre= $(\frac{3}{2}, \frac{-1}{2}, 2)$ and radius=1 (d) centre= $(\frac{-3}{2}, \frac{-1}{2}, 2)$ and radius=1
- Q.27 If $x = a \sin pt$ and $y = b \cos pt$, then the value of $\frac{d^2y}{dx^2}$ at t = 0:
 - (a) $-\frac{b}{a^2}$

(b) $-\frac{a}{h^2}$

(c) $\frac{a}{h^2}$

- (d) $\frac{b}{a^2}$
- Q.28 If a, b, c are in A.P. then the determinant

$$\begin{vmatrix} x+2 & x+3 & x+2a \\ x+3 & x+4 & x+2b \\ x+4 & x+5 & x+2c \end{vmatrix}$$
 is:

(a) 1

(b) 0

(c) x

- (d) 2x
- The direction cosines of a line which makes equal angles with the coordinate axes are:
 - (a) $(0, \frac{-1}{\sqrt{2}}, \frac{1}{\sqrt{2}})$

- (c) $(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}})$ or $(\frac{-1}{\sqrt{3}}, \frac{-1}{\sqrt{3}}, \frac{-1}{\sqrt{3}})$ (d) $(\frac{-9}{11}, \frac{6}{11}, \frac{-2}{11})$
- Q.30 Let L_1 and L_2 be two parallel lines with equation $\vec{r} = \vec{a}_1 + \lambda \vec{b}$ and $r = \vec{a}_2 + \lambda \vec{b}$ respectively. The shortest distance between them is:
 - (a) $d = \left| \frac{\vec{b} \times (\vec{a}_2 \vec{a}_1)}{|\vec{b}|} \right|$
- (b) $d = \left| \frac{\vec{b} \cdot (\vec{a}_2 \vec{a}_1)}{|\vec{b}|} \right|$
- (c) $d = \left| \frac{\vec{a}_1 \times (\vec{a}_2 \vec{a}_1)}{|\vec{b}|} \right|$
- (d) $d = \left| \frac{\vec{a}_2 \times (\vec{a}_2 \vec{a}_1)}{|\vec{b}|} \right|$
- If A and B are two events such that $P(A) = \frac{1}{4}$, $P(B) = \frac{1}{3}$ and $P(A \cup B) = \frac{1}{2}$ then A and B are:
 - (a) not independent events
- (b) mutually exclusive events
- (c) independent events
- (d) complementry events

Q.32
$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^2 x \, dx$$
 is:

(a) $\frac{\pi}{4}$

(b) $\frac{\pi}{2}$

(c) π

(d) 0

Q.33 The area under the given curve and given lines: $y = x^4$, x = 1, x = 5 and x - axis

(a)
$$\frac{3124}{3}$$
 sq. units

(b)
$$\frac{3124}{7}$$
 sq. units

(c)
$$\frac{3124}{5}$$
 sq.units

(d)
$$\frac{3124}{9}$$
 sq. units

Q.34 The total length of the curve $x^{2/3} + y^{2/3} = a^{2/3}$:

(a) 3a

(b) 4a

(c) 6a

(d) 8a

Q.35 Let $f(x) = \tan^{-1}(\frac{1 + \cos x}{\sin x})$ and $g(x) = \tan^{-1}(\frac{\sin x}{1 - \cos x})$.

$$\int (f(x) + g(x)) dx =$$

(a)
$$\frac{\pi x}{2} - \frac{x^2}{4} + c$$

(b)
$$\pi x - \frac{x^2}{2} + c$$

(c)
$$\pi x + \frac{x^2}{4} + c$$

(d)
$$\pi x + \frac{x^2}{2} + c$$

Q.36 Let a relation R on the Set A of real numbers be defined as

$$(a,b) \in R = > 1 + ab > 0$$
 for all $a, b \in A$. The Relation R is:

(a) Reflexive

(b) Symmetric

(c) transitive

(d) Ref<mark>lexiv</mark>e and Symmetric

Q.37 A Parallelepiped is formed by planes drawn parallel to co-ordinate axes through the point A=(1,2,3) and B=(9,8,5). The volume of parallelepiped is equal to (in cubic units)

(a) 192

(b) 48

(c) 32

(d) 96

Q.38 There are n locks and n matching keys. If all the locks and keys are to be perfectly matched, then maximum number of trials is equal to:

(a) n C_{2}

(b) $^{n-1}C_2$

 $(c)^{n+1} C_2$

(d) n!

- The number of terms in $(a_1 + a_2 + a_3 + a_4)^3$ is:
 - (a) 64

(b) 81

(c) 30

- (d) 20
- $\lim_{x \to 1} \frac{x^{n+1} (n+1)x + n}{(x-1)^2}$ Q.40
 - (a) n(n+1)

(b) $\frac{n(n+1)}{2}$

(c) n + 1

- (d) $\frac{3n}{2}$
- Q.41 If f is an increasing function and g is a decreasing function such that g(f(x)) exist, then:
 - (a) g(f(x)) is an increasing function
 - (b) g(f(x)) is an decreasing function
 - (c) g(f(x)) is an constant function
 - (d) nothing can be said
- Q.42 B and C are fixed points having co-ordinates (3,0) and (-3,0) respectively. If the vertical angle BAC is 90°, then the locus of the centroid of the $\triangle ABC$ has the equation:
 - (a) $x^2 + y^2 = 1$

- (b) $x^2 + y^2 = 2$
- (c) $9(x^2 + y^2) = 1$
- (d) $9(x^2 + y^2) = 4$
- Q.43 A vertical tower stands on a declivity which is inclined at 15° to the horizon from the foot of the tower a man ascends the declivity for 80 feet. And then finds that the tower subtends an angle of 30°. The height of the tower in feet:
 - (a) 80

(c) $80\sqrt{3}$

- (b) 160 (d) $40(\sqrt{6} \sqrt{2})$
- Q.44 If α and β are the roots of the equation $x^2 + x + 1 = 0$ then $\alpha^2 + \beta^2$ is equal to:
 - (a) 2

(b) 1

(c) -1

- (d) -2
- Q.45 The sum of all natural numbers lying between 100 and 1000 which are multiples of 5:
 - (a) 98450

(b) 179

(c)8450

(d) 995

- Q.46 The sum of the product of the corresponding terms of the sequence 2, 4, 8, 16, 32 and 128, 32, 8, 2, $\frac{1}{2}$:
 - (a) 946

(b) 496

(c)649

- (d) 780
- Q.47 The points (a, 0), (0, b), and (1, 1) are collinear if: $\frac{1}{a} + \frac{1}{b} =$
 - (a) 2

(b) 3

(c) 1

- (d) 0
- Q.48 $a_1, a_2, ... a_{24}$ are in A.P. and $a_1 + a_5 + a_{10} + a_{15} + a_{20} + a_{24} = 300$ the sum of first 24 terms of the A.P.
 - (a) 1800

(b) 1200

(c) 600

- (d) 900
- Q.49 The equation of the curve passing through point $(0, \frac{\pi}{4})$ whose differential equation is $\sin x \cos y \, dy + \cos x \sin y \, dy = 0$:
 - (a) $\sin x \cos y = \sqrt{2}$
- (b) $\sin x \sin y = c$
- (c) $\cos x \cos y = 2$
- (d) $\sec x \sec y = \sqrt{2}$
- Q.50 A perpendicular distance of a corner of a unit cube from a diagonal not passing through it is:
 - (a) $\sqrt{\frac{3}{2}}$

(b) $\sqrt{\frac{2}{3}}$

(c) $\sqrt{\frac{3}{4}}$

(d) $\sqrt{\frac{4}{3}}$

OPEN ADVERTISEMENT CANDIDATE EXAM-2015 PGT (MATHEMATICS)

ANSWERS KEY

1. D	
2. B	
3. B	26. B
4. B	27. A
5. A	28. B
6. C	29. C
7. C	30. A
8. D	31. C
9. B	32. B
10. C	33. C
11. D	34, C
12. A	35. B
13. B	¹ 36. D
14. C	37. D
15. A	38. C
16. C	39. D
17. C	40. B
18. A	41. B
19. A	42. D
20. B	43. D
21. D	44. C
22. B	45. A
23. B	46. B
24. B	47. C
25. A	48. B
,	49. A
	50. B