Quiz Date: $\mathbf{2 4}^{\text {th }}$ March 2020

Q1. Ratio between length of two trains $\mathrm{X} \& \mathrm{Y}$ is 3:4 and both the trains are running at the speed of $81 \mathrm{~km} / \mathrm{hr}$ and $108 \mathrm{~km} / \mathrm{hr}$ respectively. If both the trains are running in opposite direction, they crossed each other in 8 sec , then find in what time both trains will cross each other when running in same direction?
(a) 48 sec
(b) 56 sec
(c) 44 sec
(d) 42 sec
(e) 40 sec

Q2. A train travelling at $72 \mathrm{~km} / \mathrm{hr}$ crosses another train, having three fifth of its length and travelling in opposite direction at $45 \mathrm{~km} / \mathrm{hr}$ in $32 / 5$ seconds. It also passed a railway platform in 16 seconds. The length of the rail platform is
(a) 150 m
(b) 200 m
(c) 190 m
(d) 160 m
(e) 180 m

Q3. Gorakhdham express and Lichhavi express are running in opposite direction with the speeds off $72 \mathrm{~km} / \mathrm{hr}$ and $84 \mathrm{~km} / \mathrm{hr}$ respectively, If Gorakhdham express and Lichhavi express passed Intercity express, which are at rest having length 240 meters in 26 sec and 24 sec respectively. Find in what time Lichhavi express will passed Gorakhdham express, if both running in same direction?
(a) 144 sec
(b) 120 sec
(c) 108 sec
(d) 100 sec
(e) 180 sec

Q4. A train 75 metres long overtook a person who was walking at the rate of 6 km an hour in the same direction and passed him in $7 \frac{1}{2}$ seconds. Subsequently it overtook a second person walking in same direction and passed him in $6 \frac{3}{4}$ seconds. At what rate was the second person travelling?
(a) $1 \mathrm{~km} / \mathrm{hr}$
(b) $2 \mathrm{~km} / \mathrm{hr}$
(c) $3 \mathrm{~km} / \mathrm{hr}$
(d) $4 \mathrm{~km} / \mathrm{hr}$
(e) $2.5 \mathrm{~km} / \mathrm{hr}$

Q5. A train leaves the station $\frac{1}{2}$ hour before the scheduled time. The driver decreases its speed by $25 \mathrm{~km} / \mathrm{hr}$. At the next station 250 km away, the train reached on time. Find the original speed of the train.
(a) $100 \mathrm{~km} / \mathrm{hr}$
(b) $125 \mathrm{~km} / \mathrm{hr}$
(c) $200 \mathrm{~km} / \mathrm{hr}$
(d) $180 \mathrm{~km} / \mathrm{hr}$
(e) $175 \mathrm{~km} / \mathrm{hr}$

Q6. A train $\mathrm{P}, 180$ meter long passed a pole in $\frac{27}{4}$ sec and also passed two trains Q and R in 9 sec and 39 sec respectively, where train Q running in opposite direction of train P and train R is running in same direction of train P. If length of train Q and R is 240 meter and 210 meter respectively, then in what time train Q will pass train R, if both runs in opposite direction ?
(a) 35 sec
(b) $9 \frac{7}{11} \mathrm{sec}$
(c) $12 \frac{3}{11} \mathrm{sec}$
(d) 15 sec
(e) 55 sec

135+ TOTAL TESTS IeB00KS
Q7. A boat cover 60 km upstream and 60 km downstream in 22.5 hr with its usual speed. If boat double its speed then new upstream speed is 150% more than the usual upstream speed. Find the time taken by boat to cover 80 km in downstream with usual speed.
(a) 12 hr
(b) 20 hr
(c) 5 hr
(d) 16 hr
(e) 10 hr

Q8. Speed of train ' Y ' is 100% more than speed of train ' X '. Length of train ' Y ' is 150% of the length of train ' X '. If train ' X ' can cross a pole in 2 seconds, then find in how much time train ' Y ' can cross train ' X ' when they travel in same direction?
(a) 4 seconds
(b) 5 seconds
(c) 6 seconds
(d) 8 seconds
(e) 10 seconds

Q9. A train starts from Delhi for Jammu at 8:00 A.M. Another train starts from Ludhiana Junction at 9:00 A.M for Jammu. If the distance between Delhi and Jammu is 480 km and distance between Delhi and Ludhiana is 160 km and both trains reach Jammu at same time, then find speed of second train. It is given that first train covers $\frac{1}{6}$ th of total distance between Delhi and Jammu in first hour. While going to Jammu, first train passes through Ludhiana.
(a) $48 \mathrm{~km} / \mathrm{h}$
(b) $64 \mathrm{~km} / \mathrm{h}$
(c) $84 \mathrm{~km} / \mathrm{h}$
(d) $54 \mathrm{~km} / \mathrm{h}$
(e) $68 \mathrm{~km} / \mathrm{h}$

Q10. Speed of a boat in still water is 120% of its upstream speed in a river. After covering 105 km downstream it returns and covers $28 \frac{4}{7} \%$ of distance covered in downstream. If time taken in downstream is 3 hours more than time taken in return trip then find the normal speed of current.
(a) $2 \mathrm{~km} / \mathrm{hr}$
(b) $2.5 \mathrm{~km} / \mathrm{hr}$
(c) $3 \mathrm{~km} / \mathrm{hr}$
(d) $4 \mathrm{~km} / \mathrm{hr}$
(e) $3.5 \mathrm{~km} / \mathrm{hr}$

S1. Ans(b)
Sol.

Let length of train X \& Y be 3L meter and 4L meter respectively.
A/Q,
$(81+108) \times \frac{5}{18}=\frac{3 L+4 L}{8}$
$52.5 \times 8=7 L$
$\mathrm{L}=60$ meter
Length of train $\mathrm{X}=180$ meters
Length of train $Y=240$ meters
Let, when trains are running in same direction cross each other in T sec
$(108-81) \times \frac{5}{18}=\frac{180+240}{T}$
$7.5 \mathrm{~T}=420$
$\mathrm{T}=56 \mathrm{sec}$

S2. Ans.(c)
Sol.
Let length of first train is x metre.
$\frac{\left(x+\frac{3 x}{5}\right)}{20+\frac{25}{2}}=\frac{32}{5}$
$\frac{16 x}{325}=\frac{32}{5}$
$x=130 \mathrm{~m}$
\therefore Length of platform $=16 \times 20-130$
$=320-130=190 m$

S3. Ans.(e)
Sol.
Let length of Gorakhdham express is L_{G} meters and length of Lichhavi express is L_{M} meters
For Gorakhdham express -
$72 \times \frac{5}{18}=\frac{\mathrm{L}_{\mathrm{G}}+240}{26}$
$\mathrm{L}_{\mathrm{G}}=520-240$
$\mathrm{L}_{\mathrm{G}}=280$ meters
Same for Lichhavi express
$84 \times \frac{5}{18}=\frac{\mathrm{L}_{\mathrm{M}}+240}{24}$

$\frac{70}{3}=\frac{L_{M}+240}{24}$
$\mathrm{L}_{\mathrm{M}}=560-240$
$\mathrm{L}_{\mathrm{M}}=320$ meters
Let in T sec Lichhavi express will pass Gorakhdham express
Relative speed $=(84-72) \times \frac{5}{18}=\frac{10}{3} \mathrm{~m} / \mathrm{sec}$
Required time $(T)=\frac{(280+320) \times 3}{10}=180 \mathrm{sec}$
S4. Ans. (b)
Sol. Let speed of train $=S \mathrm{~km} / \mathrm{hr}$

$$
(S-6)=\frac{75}{15} \times 2 \times \frac{18}{5}
$$

$S-6=36$
$\mathrm{S}=42 \mathrm{~km} / \mathrm{hr}$
Let speed of the second person $=x \mathrm{~km} / \mathrm{hr}$
$\therefore(42-\mathrm{x})=\frac{75}{27} \times 4 \times \frac{18}{5}$
$42-\mathrm{x}=40$
$\mathrm{x}=2 \mathrm{~km} / \mathrm{hr}$
S5. Ans.(b)
Sol.
Let original speed of the train was $\mathrm{x} \mathrm{km} / \mathrm{hr}$.
And original time was thours
$\therefore x t=250$
$(\mathrm{x}-25)\left(\mathrm{t}+\frac{1}{2}\right)=250$
Using (i) \& (ii)
$x t=(x-25)\left(t+\frac{1}{2}\right)$
$\mathrm{t}=\frac{x-25}{50}$
Putting value of t in (i)
$x \times \frac{x-25}{50}=250$
$\Rightarrow \mathrm{x}^{2}-25 \mathrm{x}-12500=0$
$\Rightarrow(\mathrm{x}-125)(\mathrm{x}+100)=0$
$\Rightarrow \mathrm{x}=125 \mathrm{~km} / \mathrm{hr}$

S6. Ans.(c)

Sol.
Lets speed of train P, Q and R be S_{1}, S_{2} and S_{3} respectively
Speed of train $P\left(S_{1}\right)=\frac{180}{\frac{27}{4}} \mathrm{~m} / \mathrm{s}$
$=\frac{80}{3} \frac{\mathrm{~m}}{\mathrm{~s}}$
Speed of train Q (S_{2})
$\frac{80}{3}+S_{2}=\frac{240+180}{9}$
$\mathrm{S}_{2}=\frac{420}{9}-\frac{80}{3}$
$\mathrm{S}_{2}=20 \mathrm{~m} / \mathrm{s}$
Speed of train R (S_{3})
$\frac{80}{3}-\mathrm{S}_{3}=\frac{210+180}{39}$
$\mathrm{S}_{3}=\frac{80}{3}-10$
$S_{3}=\frac{50}{3} \mathrm{~m} / \mathrm{s}$
Lets required time be T sec
Required time $=20+\frac{50}{3}=\frac{240+210}{\mathrm{~T}}$
$\frac{110}{3}=\frac{450}{\mathrm{~T}}$
$\mathrm{T}=\frac{450 \times 3}{110}$
$\mathrm{T}=12 \frac{3}{11} \mathrm{sec}$
S7. Ans.(e)
Sol.

Let usual speed of boat in still water $=x$
River speed = y
ATQ,
$\frac{(x-y) 250}{100}=(2 x-y)$
$5 x-5 y=4 x-2 y$
$\mathrm{x}=3 \mathrm{y}$
Now,
$\frac{60}{x-y}+\frac{60}{x+y}=22.5$
$\frac{60}{2 y}+\frac{60}{4 y}=22.5$
$\mathrm{y}=2 \mathrm{~km} / \mathrm{hr}$
$\mathrm{x}=6 \mathrm{~km} / \mathrm{hr}$
Required time $=\frac{80}{6+2}$
$=10 \mathrm{hr}$

S8. Ans.(b)
Sol.
Let speed of Train ' X ' = x
\Rightarrow Speed of train ' $\mathrm{Y}^{\prime}=\frac{(100+100)}{100} \times \mathrm{x}=2 \mathrm{x}$
Let, length of train ' X ' = y
\Rightarrow Length of train ' $\mathrm{Y}^{\prime}=\frac{150}{100} \times \mathrm{y}=1.5 \mathrm{y}$
ATQ,
$2=\frac{y}{x} \Rightarrow y=2 x$
Required time $=\frac{1.5 y+y}{2 x-x}=\frac{2.5 y}{x}=\frac{2.5 \times 2 x}{x}=5$ seconds
S9. Ans.(b)
Sol. Distance covered by First train (i.e. train start from Delhi) in first hour
$=\frac{1}{6} \times 480=80 \mathrm{~km}$
\Rightarrow Speed of first train $=80 \mathrm{~km} / \mathrm{h}$
Let speed of second train $=x \mathrm{~km} / \mathrm{h}$
$\therefore \frac{(480-80)}{80}=\frac{(480-160)}{x}$
$\Rightarrow x=\frac{320}{5}$
$\Rightarrow \mathrm{x}=64 \mathrm{~km} / \mathrm{h}$
S10. Ans.(c)
Sol.
Let speed of boat in still water $=x \mathrm{~km} / \mathrm{hr}$
and speed of current is $=y \mathrm{~km} / \mathrm{hr}$
so, $x=\frac{120}{100}(x-y)$
$\frac{x}{y}=\frac{6}{1}$
Let $\mathrm{x}=6 \mathrm{n} \& \mathrm{y}=\mathrm{n}$
According to question,
$\frac{105}{7 n}-\frac{\frac{200}{7} \% \times 105}{5 n}=3$
$\frac{15}{n}-\frac{6}{n}=3$
$n=\frac{9}{3}=3$
Speed of current $=3 \mathrm{~km} / \mathrm{hr}$

For any Banking/Insurance exam Assistance, Give a Missed call @ 01141183264

