S1. Ans.(d)

Sol. From I, R $+\mathrm{F}+\mathrm{M}+\mathrm{S}=90$ years
From II, $\mathrm{R}+\mathrm{M}+\mathrm{S}=18 \frac{1}{3} \times 3$ years
From III, $\mathrm{M}+\mathrm{S}=\frac{4}{7} \times 2 \mathrm{~F}$
From all three statements together, the answer can be obtained.

S2. Ans.(a)

Sol. From I \& II,
Let CP $=x$
S. $\mathrm{P}=\frac{6 \mathrm{x}}{5}$

Now, New S.P $=\frac{6 \mathrm{x}}{5} \times \frac{90}{100}=\frac{54 \mathrm{x}}{50}$
$\Rightarrow \frac{54 \mathrm{x}}{50}-\mathrm{x}=1200 \Rightarrow \mathrm{x}=15000$
\therefore SP. $=18000$
\& from III \& I, we can obtain selling price.
\& from II \& III,
Let S.P. $=\mathrm{x}$
When 10\% discount,
S.P. $=\frac{9 \mathrm{x}}{10}$
$\therefore \frac{9 \mathrm{x}}{10}-15000=1200 \Rightarrow \mathrm{x}=18000$
Thus, any two of the three statements are required.

S3. Ans. (b)

Sol. $12 \mathrm{~W}+8 \mathrm{C} \rightarrow 24$ days
$\Rightarrow 3 \mathrm{~W}+2 \mathrm{C} \rightarrow 24 \times 4$ days
From A, $2 \mathrm{M}=(3 \mathrm{~W}+2 \mathrm{C})$
$\Rightarrow 2 \mathrm{M} \rightarrow 24 \times 4$ days
$\Rightarrow 1 \mathrm{M} \rightarrow 24 \times 4 \times 2$ days
From B,
$3 W=6 C \Rightarrow W=2 C$
$\Rightarrow 4 \mathrm{~W}=2 \mathrm{M}$
$\Rightarrow 1 \mathrm{~W} \rightarrow 24 \times 16$ days
\therefore from $\mathrm{A}+\mathrm{B}, 12 \mathrm{M}+12 \mathrm{~W} \rightarrow\left(\frac{1}{24 \times 8}+\frac{1}{24 \times 16}\right) \times 12$
$\rightarrow \frac{1}{16}+\frac{1}{32}$
$\rightarrow \frac{32}{3}$ days
From C,
Not known no. of persons.

S4. Ans.(e)

Sol. Let length of tunnel and speed of train be $\mathrm{x} m$ and $\mathrm{v} \mathrm{m} / \mathrm{s}$ respectively.
\therefore speed $=\frac{\mathrm{x}+\text { length of train }}{24}$
From A, Length of platform
$=\frac{7}{5} \times$ length of train
From A + B, length of train $=18 \times v \times \frac{5}{12}$
From C, v $=54 \times \frac{5}{18}=15 \mathrm{~m} / \mathrm{sec}$
All statements are required

S5. Ans. (e)

Sol. Let M.P of TV = Rs 100x
From A, SP of TV = Rs 85 x
From B, CP of table $=85 \mathrm{x} \times \frac{100}{120} \times \frac{60}{100}$
From C, $85 \mathrm{x} \times \frac{100}{120} \times \frac{60}{100} \times \frac{110}{100}=560$
From all three statements together, the answer can be obtained.

Solutions (6-10)

Total students appeared in 2016 $=8000$
Total students appeared in $2013=5800$
Total students appeared in exam B is $2011 \& 2013=6200$
Total students appeared in exam B in $2011=\frac{6200}{31} \times 18=3600$
Total students appeared in exam B in $2013=\frac{6200}{31} \times 13=2600$
Total students appeared in exam A in 2013 $=5800-2600=3200$
Total students appeared $2011=\frac{8000}{125} \times 100=6400$
Total students appeared in exam A in 2011 $=6400-3600=2800$
Total students appeared in $2014=\frac{8000}{16} \times 13=6500$
Students appeared in exam B in $2011=$ Students appeared in exam A in 2015 $=3600$
Students appeared in exam B in $2015=\frac{3600}{4} \times 3=2700$
Students appear in exam A in $2016=\left[1+\frac{1700}{2700}\right] \times 2700=4400$
Students appear in exam B in 2016 $=8000-4400=3600$
Let, student appeared in exam A in $2014=x$
student appeared in exam A in $2012=x+700$
$\Rightarrow \mathrm{x}+\mathrm{x}+700+2800+3200+3600+4400=21,100$
$2 \mathrm{x}=6400 \Rightarrow \mathrm{x}=3200$
Students appeared in exam A in $2014=3200$
Students appeared in exam A in 2012 $=3200+700=3900$
Students appeared in exam B in 2014 $=6500-3200=3300$

General Awareness

Based on GA POWER CAPSULE

RBI ASSISTANT MAINS

bankersadda.com
2500 + Questions
Current Affairs | Banking IStatic

Students appeared in exam B in 2012 $=3300+1200=4500$

	A	B	Total
2011	2800	3600	6400
2012	3900	4500	8400
2013	3200	2600	5800
2014	3200	3300	6500
2015	3600	2700	6300
2016	4400	3600	8000
Total	21,100	20,300	

S6. Ans.(b)

Sol. According to table its in 2014.

S7. Ans.(d)

Sol. Required ratio $=\frac{2800+3200+3900}{2600+3300+3600}$
$=\frac{9900}{9500}=\frac{99}{95}$

S8. Ans.(b)

Sol. Average students appeared in exam A in starting four years
$=\frac{2800+3900+3200+3200}{4}$
$=3275$
Average students appeared in exam B in starting four years
$=\frac{3600+4500+2600+3300}{4}$
$=3500$
Required difference $=225$.

S9. Ans.(e)

Sol. Required difference $=4500-3200=1300$

S10. Ans.(c)

Sol. Required $\%=\frac{8400-6400}{6400} \times 100$
$=\frac{2000}{6400} \times 100$
$=31.25 \%$

S11. Ans.(c)

Sol. $?=\frac{3}{5} \times \frac{4}{7} \times \frac{5}{9} \times \frac{21}{24} \times 504=84$

S12. Ans.(c)

Sol. $63 \times(27)^{?}=296-107$
$?=\frac{1}{3}$

S13. Ans.(b)
Sol. $\frac{35}{36} \times ?=\frac{30}{9}-\frac{5}{2}$
$?=\frac{6}{7}$
S14. Ans.(b)
Sol. $\frac{3}{11}+\frac{39}{44}+\frac{5}{22}=$?
$=\frac{12+39+10}{44}$
$?=\frac{61}{44}$

S15. Ans.(c)

Sol. $529+2304-1521=?+1147$
?= 165

adda
 publications

BODKS

Visit: publications.adda247.com \& store.adda247.com
For any information, mail us at publications@adda247.com

