Quiz Date: $\mathbf{2 5}^{\text {th }}$ March 2020

Directions (1-5) : Solve the following questions and choose the appropriate options as answer.
(a) Quantity $1>$ Quantity 2
(b) Quantity $1<$ Quantity 2
(c) Quantity $1 \geq$ Quantity 2
(d) Quantity $1 \leq$ Quantity 2
(e) No relation or Quantity $1=$ Quantity 2

Q1. Quantity 1 - value of x such that 12% of 75% of x is greater than 5% of x by 75 .
Quantity 2 - litres of a 30% alcohol solution that should be added to 40 litres of a 60% alcohol solution to prepare a 50% solution.

Q2. Quantity 1 - Teacher's age which, when included with a group of 36 students having average age 14 yrs, increases the average by 1 .
Quantity 2 - Teacher's age which, when excluded from a group of 24 students, reduces the average age of 16 yrs by 1 .

Q3. Quantity I - ' a ': Ratio of efficiency of X, Y and Z is $3: 2: 1 . \mathrm{X}$ and Z together can complete the work in 15 days. X and Y started a work together and after 9 days, both left the work and remaining work is completed by Z in 'a' days.
Quantity II - 'b': Ratio of efficiency of X, Y and Z is $3: 2: 1$. Y alone can complete the work in 15 days. X , Y and Z started the work alternatively starting from X . ' b ' is the number of days in which the work is completed.

Q4. Quantity 1 - Total distance travelled by a man who travels equal distances with speeds of $3 \mathrm{~km} / \mathrm{hr}, 4 \mathrm{~km} / \mathrm{hr}$ and $5 \mathrm{~km} / \mathrm{hr}$ and takes a total time of 47 minutes.
Quantity 2 - Distance travelled by each of A and B when A and B travel the same distance at $9 \mathrm{~km} / \mathrm{hr}$ and $10 \mathrm{~km} / \mathrm{hr}$ respectively and A takes 20 minutes longer than B.

Q5. Quantity 1 - Number of spherical balls that can be made by melting of a cylinder 28 cm high and with base radius 6 cm , each ball being 1.5 cm in diameter ?
Quantity 2 - value of x. A cube of $384 \mathrm{~cm}^{2}$ surface area is melted to make x number of small cubes each of $96 \mathrm{~mm}^{2}$ surface area.

Directions (6-10): In each of these questions, two equations I and II are given. You have to solve both the equations and give answer
(a) if $x>y$
(b) if $x \geq y$
(c) if $x<y$
(d) if $x \leq y$
(e) if $x=y$ or no relation can be established between x and y

Q6. I. $(289)^{\frac{1}{2}} x-(324)^{\frac{1}{2}}=203$
II. $(484)^{\frac{1}{2}} y-(225)^{\frac{1}{2}}=183$

Q7. I. $7 \mathrm{x}+3 \mathrm{y}=77$
II. $2 x+5 y=(2601)^{\frac{1}{2}}$

Q8. I. $3 \mathrm{x}^{2}-(6+\sqrt{17}) x+2 \sqrt{17}=0$
II. $10 \mathrm{y}^{2}-(18+5 \sqrt{17}) y+9 \sqrt{17}=0$

Q9. I. $3 \mathrm{x}^{2}-23 \mathrm{x}+40=0$
II. $2 y^{2}-23 y+66=0$

Q10.I. $3 \mathrm{x}^{2}-4 \mathrm{x}-32=0$
II. $2 y^{2}-17 y+36=0$

$$
\begin{aligned}
& \text { TEST SERIES } \\
& \text { Bilingual } \\
& \text { video solutions } \\
& \text { SBI CLERK } \\
& \text { PRE + MAINS } \\
& \text { 135+ TOTAL TESTSIeBOOKS }
\end{aligned}
$$

Q11. A train driver leaves Gorakhpur at 6:30 am and expects to reach at place 600 km from Gorakhpur at $2: 30 \mathrm{pm}$. At 12:30 pm he finds that he has covered only 40% of the distance. By how much he has to increase the speed of the train in order to reach at scheduled time?
(a) $180 \mathrm{~km} / \mathrm{hr}$
(b) $120 \mathrm{~km} / \mathrm{hr}$
(c) $150 \mathrm{~km} / \mathrm{hr}$

(d) $100 \mathrm{~km} / \mathrm{hr}$
(e) None of these

Q12. Train A with speed $60 \mathrm{~km} / \mathrm{h}$ started from point P to Q and after one hour, another train B with speed $90 \mathrm{~km} / \mathrm{h}$ also started from point P for Q . Train B meet train A at point R. 10 hours after crossing train A, train B reached Q and started its return journey from Q to P without any delay. This time, both the trains crossed each other at point S. What is the distance between point R and S ?
(a) 780 km
(b) 660 km
(c) 600 km
(d) 720 km
(e) None of these

Q13. A train after 3 hours from starting meets with an accident which detains it from an hour. After this the train proceeds at 75% of its former speed and arrives 4 hours late. Had the
accident happened 150 km farther along the line, it would have arrived only $3 \frac{1}{2}$ hours late if it travelled with 75\% of its natural speed. Find natural speed of the train and total distance of journey?
(a) $100 \mathrm{~km} / \mathrm{hr}, 1500 \mathrm{~km}$
(b) $200 \mathrm{~km} / \mathrm{hr}, 1200 \mathrm{~km}$
(c) $100 \mathrm{~km} / \mathrm{hr}, 1200 \mathrm{~km}$
(d) $150 \mathrm{~km} / \mathrm{hr}, 1200 \mathrm{~km}$
(e) None of these

Q14. The ratio of time taken by boat A to cover a certain distance in upstream to time taken by boat B to cover same distance in downstream in same river is $7: 4$ respectively. The time taken by boat A to cover another distance in upstream is 75% more than the time taken by it to cover that distance in downstream in the same river. Find speed of boat B in still water is what percent of speed of boat A in still water?
(a) 150%
(b) 120%
(c) 125%
(d) 80%
(e) 100%

Q15. The distance between two stations A and B is 900 km . A train starts from A and moves towards B at an average speed of $30 \mathrm{~km} / \mathrm{hr}$. Another train starts from B, 20 minutes earlier than the train at A, and moves towards A at an average speed of $40 \mathrm{~km} / \mathrm{hr}$. How far from A will the two trains meet?
(a) 380 km
(b) 320 km
(c) 240 km
(d) 330 km
(e) None of these

Solutions

S1. Ans.(a)
Sol.
Quantity 1-
$\frac{12}{100} \times \frac{75}{100} \times x=\frac{5}{100} \times x+75$
$\Rightarrow \frac{4}{100} \times x=75$
$\Rightarrow x=1875$
Quantity 2 -

S2. Ans.(a)
Sol.
Quantity 1-
Let age of teacher be x
$\frac{36 \times 14+x}{37}=15$
$\Rightarrow x=51$
Quantity 2-
Let age of teacher be x
$\frac{25 \times 16-x}{24}=15$
$\Rightarrow x=40$
S3. Ans.(e)
Sol.
Quantity I
Ratio of time to complete the work $=\frac{6}{3}: \frac{6}{2}: \frac{6}{1}$
= $2: 3: 6$

Let X, Y and Z complete the work in $2 \mathrm{x}, 3 \mathrm{x}$ and 6 x days respectively.
ATQ,
$\frac{15}{2 \mathrm{x}}+\frac{15}{6 \mathrm{x}}=1$
$\Rightarrow \mathrm{x}=10$
ATQ,
$\frac{9}{20}+\frac{9}{30}+\frac{\mathrm{a}}{60}=1$
$\frac{\mathrm{a}}{60}=1-\frac{27+18}{60}$
$\mathrm{a}=60-27-18=15$ days.

Quantity II:

Ratio of time to complete the work $=2: 3: 6$
$3 \rightarrow 15$
$\Rightarrow \mathrm{X}, \mathrm{Y}$ and Z take 10,15 and 30 days to complete the work.
ATQ

Z 30
$b=\frac{30}{6} \times 3=15$ days
$\mathrm{a}=\mathrm{b}$
Quantity I = Quantity II

S4. Ans.(b)
Sol.
Quantity 1
let total distance traveled be $3 x \mathrm{~km}$.
ATQ
$\frac{x}{3}+\frac{x}{4}+\frac{x}{5}=\frac{47}{60}$
$\Rightarrow \frac{47 x}{60}=\frac{47}{60}$
$\Rightarrow \mathrm{x}=1 \mathrm{~km}$
Total distance, $3 \mathrm{x}=3 \mathrm{~km}$
Quantity 2
let the distance be x km.
ATQ
$\frac{x}{9}-\frac{x}{10}=\frac{20}{60}$
$\Rightarrow \mathrm{x}=30 \mathrm{~km}$

S5. Ans.(b)
Sol.
Quantity 1
let number of spherical balls be x.
ATQ
$x \times \frac{4}{3} \pi \times\left(\frac{1.5}{2}\right)^{3}=\pi \times 6 \times 6 \times 28$
$\Rightarrow x=\frac{6 \times 6 \times 28 \times 3 \times 8 \times 10 \times 10 \times 10}{4 \times 15 \times 15 \times 15}$
$\Rightarrow \mathrm{x}=1792$
Quantity 2
Let side of large cube be a cm
$384=6 a^{2}$
$\Rightarrow a^{2}=64$
$\Rightarrow \mathrm{a}=8 \mathrm{~cm}$
Let side of small cube be b mm
$96=6 b^{2}$
$\Rightarrow 16=b^{2}$
$\Rightarrow \mathrm{b}=4 \mathrm{~mm}=0.4 \mathrm{~cm}$
Let total number of small cubes be x .
$8^{3}=\mathrm{x} \times(0.4)^{3}$
$\Rightarrow 512=\frac{x \times 2 \times 2 \times 2}{5 \times 5 \times 5}$
$\Rightarrow \mathrm{x}=8000$
S6. Ans.(a)
Sol.
I. $17 \mathrm{x}-18=203$
$17 \mathrm{x}=221$
$\therefore \mathrm{x}=\frac{221}{17}=13$
II. $22 y-15=183$
$22 y=198$
$y=9$
$\therefore \mathrm{x}>\mathrm{y}$
S7. Ans.(a)
Sol.
I. $7 x+3 y=77$
II. $2 x+5 y=51$

Multiplying equation (i) by 5 and (ii) by 3 and solving
We get,
$x=8, y=7$
$\therefore \mathrm{x}>\mathrm{y}$
S8. Ans.(e)
Sol.
I. $3 x^{2}-6 x-\sqrt{17} x+2 \sqrt{17}=0$
$3 \mathrm{x}(\mathrm{x}-2)-\sqrt{17}(x-2)=0$
$\mathrm{x}=2$ or $\frac{\sqrt{17}}{3}$
II. $10 \mathrm{y}^{2}-18 \mathrm{y}-5 \sqrt{17} y+9 \sqrt{17}=0$
$2 y(5 y-9)-\sqrt{17}(5 y-9)=0$
$y=\frac{9}{5}$ or $\frac{\sqrt{17}}{2}$
\therefore No relation
S9. Ans.(c)
Sol.
I. $3 x^{2}-23 x+40=0$
$3 x^{2}-15 x-8 x+40=0$
$3 x(x-5)-8(x-5)=0$
$\mathrm{x}=5$ or $\frac{8}{3}$
II. $2 y^{2}-23 y+66=0$
$2 y^{2}-12 y-11 y+66=0$
$2 y(y-6)-11(y-6)=0$
$y=6$ or $\frac{11}{2}$
$\therefore \mathrm{x}<\mathrm{y}$
S10. Ans.(d)
Sol.
I. $3 x^{2}-4 x-32=0$
$3 x^{2}-12 x+8 x-32=0$
$3 x(x-4)+8(x-4)=0$
$x=4$ or $-8 / 3$
II. $2 y^{2}-17 y+36=0$
$2 y^{2}-9 y-8 y+36=0$
$y(2 y-9)-4(2 y-9)=0$
$y=4$ or $9 / 2$
$\therefore \mathrm{y} \geq \mathrm{x}$

S11. Ans.(e)
Sol.
Distance covered by train between $6: 30$ am and 12: 30 pm
$=\frac{40}{100} \times 600=240 \mathrm{~km}$
Now remaining 360 km distance to be covered in 2 hours.
So, required speed $=\frac{360}{2}$

$$
\begin{aligned}
& =\frac{180}{2} \\
& =180 \mathrm{~km} / \mathrm{hr}
\end{aligned}
$$

\therefore Required increment in speed $=180-40=140 \mathrm{~km} / \mathrm{hr}$

S12. Ans.(d)
Sol.
Let, train B crossed train A in x hours.
Train B started one hour later than train A.
According to the question,
$60 \times(x+1)=90 \times x$
$\Rightarrow \mathrm{x}=2$ hours
Distance between point P and R
= Distance travelled by train B in 2 hours
= 90×2
$=180 \mathrm{~km}$
Distance between train B and A when train B reached Q
$=10 \times 90-10 \times 60=900-600=300 \mathrm{~km}$
Let train B met train A second time y hours after starting from Q
Both the trains together travelled a total distance of 300 km in y hours before crossing each other.
$90 y+60 y=300$
$\Rightarrow 150 \mathrm{y}=300$
$\Rightarrow y=2$ hours
Distance between R and S
$=$ Distance travelled by train A in $(10+2)$ hours
$=60 \times 12$
$=720 \mathrm{~km}$

S13. Ans.(c)
Sol. Let original speed of train is $\mathrm{x} \mathrm{km} / \mathrm{hr}$.
Then reduced speed $=\frac{3}{4} x \mathrm{~km} / \mathrm{hr}$
Now according to question \Rightarrow

$\frac{150}{\frac{3}{4} x}-\frac{150}{x}=4-3 \frac{1}{2}$
$\Rightarrow x=100 \mathrm{~km} / \mathrm{hr}$
Now assume train takes ' t ' hour to coves remaining distance after meeting accident then
$100 \mathrm{t}=75(\mathrm{t}+3)$
$\mathrm{t}=9$ hours
Total time of journey at normal speed $=9+3=12$ hours
Then total distance of journey $=100 \times(9+3)$
$=1200 \mathrm{~km}$.

S14. Ans.(e)
Sol.
Let total distance be D km .
And, speed of boat A in still water be x km/hr
Speed of boat B in still water be y km/hr
Speed of stream be r km/hr
ATQ -
$\frac{D}{x-r}: \frac{D}{y+r}=\frac{7}{4}$
Or, $\frac{y+r}{x-r}=\frac{7}{4}$
Also, for another distance D_{1},
$\frac{D_{1}}{x-r}=\frac{7}{4}\left(\frac{D_{1}}{x+r}\right)$
or, $4 x+4 r=7 x-7 r$
or, $3 x=11 r$
From (i) and (ii)
$\frac{y+r}{\frac{11 r}{3}-r}=\frac{7}{4}$
$3 y=11 r$
From (ii) \& (iii),
Required percentage= 100%
S15. Ans.(a)
Sol. Distance covered by $2^{\text {nd }}$ train in 20 minutes $=\frac{20}{60} \times 40=\frac{40}{3} \mathrm{~km}$
Remaining distance $=900-\frac{40}{3}=\frac{2660}{3} \mathrm{~km}$
Time after which they will meet $=\frac{\frac{2660}{3}}{70}$ hours
Distance covered by A in this time $=\frac{2660}{210} \times 30=380 \mathrm{~km}$

For any Banking/Insurance exam Assistance, Give a Missed call@01141183264

