Quiz Date: $\mathbf{1 9}^{\text {th }}$ April 2020

Q1. Area of a given circle is $616 \mathrm{~m}^{2}$. Perimeter of a rectangle is same as perimeter of circle. Find the diagonal of the rectangle if length of rectangle is 20% more than the breadth of the rectangle.
(a) $2 \sqrt{59}$
(b) $2 \sqrt{62}$
(c) $4 \sqrt{61}$
(d) $4 \sqrt{15}$
(e) $2 \sqrt{65}$

Q2. The difference of the areas of two squares drawn on 2 line segments of different lengths is $32 \mathrm{~cm}^{2}$. Find the length of the greater line segment, if one is longer than the other by 2 cm .
(a) 9 cm
(b) 12 cm
(c) 10 cm
(d) 8 cm
(e) 6 cm

Q3. A child is asked to pick up 2 balloons from a box containing 10 blue and 15 red balloons. What is the probability of the child picking, at random, 2 balloons of different colors ?
(a) $\frac{1}{2}$
(b) $\frac{2}{3}$
(c) $\frac{1}{4}$
(d) $\frac{3}{5}$

(e) $\frac{5}{7}$

Q4. In how many ways can 5 prizes be distributed to 8 students if each student can get any number of prizes ?
(a) 40
(b) 5^{8}
(c) 8^{5}
(d) 120
(e) 140

Q5. A cylinder having height 196 cm radius 14 cm is casted into ' x ' number of cubes having side 7 cm . Find the value of ' x '.
(a) 44
(b) 352
(c) 308
(d) 392
(e) 2816

Q6. The circumference of two circles is 132 m and 176 m respectively. What is difference between the area of larger circle and smaller circle ? (in m^{2})
(a) 1052
(b) 1128
(c) 1258
(d) 1078
(e) 1528

Q7. The letters of the word PROMISE are to be arranged so that three vowels should not come together. Find the number of arrangements.
(a) 4470
(b) 4320
(c) 3792
(d) 4200
(e) 4450

12 Months Subscription

SBI PO
MAHA PACK
Live Class, Video Course Test Series, eBooks

English (with eBooks)

Q8. There are four hotels in a town. If three men check into the hotels in a day then what is the probability that all of them do not check into the same hotel?
(a) $\frac{15}{16}$
(b) $\frac{63}{64}$
(c) $\frac{3}{64}$
(d) $\frac{1}{16}$
(e) $\frac{1}{4}$

Q9. Two letters are chosen out of the alphabets of the English language. Find the probability that both the letters are vowels.
(a) $\frac{2}{65}$
(b) $\frac{3}{65}$
(c) $\frac{1}{65}$
(d) $\frac{3}{5}$
(e) $\frac{7}{65}$

Q10. How many five-letters containing 2 vowels and 3 consonants can be formed using the letters of the word EQUALITY so that 2 vowels occur together?
(a) 1260
(b) 1000
(c) 1150
(d) 1152
(e) None of these

Q11. A number is selected at random from the first 50 natural numbers. What is the probability that it is either a multiple of 7 or a multiple of 9 ?
(a) $\frac{3}{25}$
(b) $\frac{6}{25}$
(c) $\frac{9}{50}$
(d) $\frac{1}{5}$
(e) $\frac{11}{50}$

Q12. Curved surface area of a right circular cone is $1.76 \mathrm{~m}^{2}$ and its base diameter is 140 cm . find the height of the cone?
(a) 10 cm
(b) $10 \sqrt{2} \mathrm{~cm}$
(c) $20 \sqrt{2} \mathrm{~cm}$
(d) $10 \sqrt{15} \mathrm{~cm}$
(e) $15 \sqrt{10} \mathrm{~cm}$

Q13. There are 5 multiple choice questions in an examination. How many sequences of answers are possible, if the first three questions have 4 choices each and the next two have 6 choices each?
(a) 2804
(b) 3456
(c) 7776
(d) 2304
(e) 1024

Q14. A bag has seven red, four white and three green balls while another bag has five red, six yellow and three blue balls. A bag is selected at random and a ball drawn out of it, then Find the probability that the ball drawn is red.
(a) $\frac{1}{7}$
(b) $\frac{3}{7}$
(c) $\frac{2}{7}$
(d) 1
(e) $\frac{6}{7}$

Q15. Curved surface area of a given cylinder is $924 \mathrm{~m}^{2}$. If ratio of radius and height of cylinder is $1: 3$ then find the volume of cylinder (in m^{3})
(a) 3234
(b) 2156
(c) 3102
(d) 2860
(e) 3476

Solutions

S1. Ans.(c)
Sol.
$\pi r^{2}=616$
$\Rightarrow \mathrm{r}=14 \mathrm{~m}$
Perimeter of rectangle $=$ Perimeter of circle $=2 \pi r=2 \times \frac{22}{7} \times 14=88$
And,
$2(\ell+b)=88$
$(1.2 b+b)=44$
$2.2 \mathrm{~b}=44$
b $=20$
$\ell=24$
Diagonal $=\sqrt{20^{2}+24^{2}}=\sqrt{976}=4 \sqrt{61} \mathrm{~m}$

135+ TOTAL TESTS leBOOKS
S2. Ans.(a)
Sol.
Let the length of smaller be x cm
\therefore length of larger be $(\mathrm{x}+2) \mathrm{cm}$
ATQ,
$(x+2)^{2}-x^{2}=32$
$\mathrm{x}^{2}+4 \mathrm{x}+4-\mathrm{x}^{2}=32$
$4 \mathrm{x}=28$
$\mathrm{x}=7 \mathrm{~cm}$
\therefore length of greater line segment $=9 \mathrm{~cm}$.

S3. Ans.(a)
Sol.
Blue and Red or Red and Blue
$=\left(\frac{10}{25}\right) \times\left(\frac{15}{24}\right)+\left(\frac{15}{25}\right) \times\left(\frac{10}{24}\right)=\left(\frac{1}{2}\right)$
S4. Ans.(c)
Sol.
No. of ways $=8^{5}$
S5. Ans.(b)
Sol.
Volume of cylinder $=$ Volume of ' x ' cubes
$\frac{22}{7} \times 14 \times 14 \times 196=x \times 7^{3}$
$\Rightarrow \mathrm{x}=352$
S6. Ans.(d)
Sol.
Let radius of smaller \& larger circles be $r_{1} \& r_{2}$ respectively.
$2 \pi r_{1}=132$
$\mathrm{r}_{1}=21 \mathrm{~m}$
$2 \pi r_{2}=176 \Rightarrow r_{2}=28 \mathrm{~m}$.
\therefore Required difference
$=\pi\left(\mathrm{r}_{2}^{2}-\mathrm{r}_{1}^{2}\right)$
$=\frac{22}{7} \times 49 \times 7$
$=1078 \mathrm{~m}^{2}$

S7. Ans.(b)
Sol.
Total number of letters = 7
Total number of arrangements $=7$!
Now, if all time vowels come together then we have to suppose three vowels as a unit, for example OIE PRMS.
Thus,
Number of words when three vowels come together $=5!\times 3!=720$
And the number of arrangements when three vowels do not come together $=$ total number of arrangements - 720
$=7!-720$
$=5040-720=4320$.

S8. Ans.(a)
Sol.
The total number of ways in which they can check in $=4 \times 4 \times 4=64$ ways.
Out of this there will be 4 ways in which all of them will check into the same hotel.

Number of ways all of them do not check into the same hotel $=64-4=60$ ways
Required probability $=\frac{60}{64}=\frac{15}{16}$
S9. Ans.(a)
Sol.
For both letters to be vowels.
Possible cases $={ }^{5} \mathrm{C}_{2}=10$ ways.
Total cases $={ }^{26} \mathrm{C}_{2}=$
$=26 \times \frac{25}{2}$
$=13 \times 25$
$=325$ ways.
Required probability $=\frac{10}{325}=\frac{2}{65}$
S10. Ans.(d)
Sol.
The work EQUALITY contains 4 vowels ($\mathrm{E}, \mathrm{U}, \mathrm{A}, \mathrm{I}$) and 4 consonants ($\mathrm{Q}, \mathrm{L}, \mathrm{T}, \mathrm{Y}$). 2 vowels out of 4 and 3 consonants out of 4 can be selected in ${ }^{4} \mathrm{C}_{2} \times{ }^{4} \mathrm{C}_{3}$ ways
Thus, required number of words $={ }^{4} \mathrm{C}_{2} \times{ }^{4} \mathrm{C}_{3} \times 4!\times 2!=1152$.

COMPLETE EBOOKS KIT
Ace Reasoning | Quant | English Puzzle IData Interpretation

S11. Ans.(b)

Sol.
There are seven multiples of 7 from 1 to 50 .
Also, there are five multiples of 9 from 1 to 50 .
Therefore, the possible cases $=7+5=12$ cases
Total number of cases $=50$
Required probability $=\frac{12}{50}=\frac{6}{25}$
S12. Ans.(d)
Sol.
Curved surface area of cone $=\pi r \ell=1.76 \mathrm{~m}^{2}$
$\frac{22}{7} \times 70 \times \ell=17600$
$\ell=80$

Height of cone $=\sqrt{80^{2}-70^{2}}$
$=\sqrt{6400-4900}$
$=\sqrt{1500}=10 \sqrt{15} \mathrm{~cm}$

S13. Ans.(d)
Sol.
Places: - - - -
Digits: $4 \quad 4 \quad 4 \quad 6 \quad 6$
Total number of sequences $=4 \times 4 \times 4 \times 6 \times 6=2304$.
S14. Ans.(b)
Sol.
In this case we need to select the probability of choosing one bag out of two given bags which will be $=\frac{1}{2}$
So, the required probability $=\frac{1}{2}($ Red ball from bag $1+$ Red ball from bag 2$)$
$=\frac{1}{2}\left(\frac{7}{14}+\frac{5}{14}\right)$
$=\frac{12}{28}=\frac{6}{14}=\frac{3}{7}$
S15. Ans.(a)
Sol.
Curved surface area $=2 \pi r l$
Where
$r=$ radius of box circle of cylinder
$\ell=$ length or height of cylinder
and, $\frac{\mathrm{r}}{\ell}=\frac{1}{3}$
$\Rightarrow 2 \pi r \times 3 r=924$
$\Rightarrow r^{2}=49 \Rightarrow r=7$
$\Rightarrow \ell=21$
Volume of cylinder $=\pi r^{2} \ell$
$=\frac{22}{7} \times 7 \times 7 \times 21$
$=3234$

