Quiz Date: 20 ${ }^{\text {th }}$ July 2020
Directions (1-5): Study the following information carefully to answer the questions. In a comparative study of population of six states. A, B, C, D, E and F the following were observed.
Female population of state A is $120 \%$ of the male population of state $C$ and $90 \%$ of the female population of state D.
Male population of state B is $125 \%$ of the male population of state D and $1 \frac{11}{14}$ times of the male population of state E. Male and female populations of state $D$ are in the ratio of $13: 12$ respectively.
Male population of state $A$ is $5 / 11$ th of the total population of the state which is 198000. Female population of state C is $110 \%$ of the female population of state A and $75 \%$ of the male population of state F.

Male and female populations of state $E$ are in the ratio of $7: 8$ respectively. Female population of state B is $150 \%$ of the male population of state A. Female population of state $F$ is equal to the male population of state $D$.

Q1. Male population of state A is what percent more or less than female population of state B?
(a) $14 \frac{2}{7} \%$
(b) $16 \frac{2}{3} \%$
(c) $25 \frac{2}{3} \%$
(d) $33 \frac{1}{3} \%$
(e) $28 \frac{2}{7} \%$


Q2. What is the ratio of male population of state $C$ to the female population of state $F$ ?
(a) $7: 12$
(b) $8: 15$
(c) $9: 13$
(d) $11: 16$
(e) $10: 13$

Q3. What is the total population in state D ?
(a) $1,80,000$
(b) $2,50,000$
(c) $2,10,000$
(d) $2,60,000$
(e) 2,00,000

Q4. What is the average of female population from state A, B and D together?
(a) $1,21,000$
(b) $1,22,000$
(c) $1,18,000$
(d) $1,15,000$
(e) $1,24,000$

Q5. What is the total population of state F ?
(a) 1,90,600
(b) $2,58,600$
(c) $2,22,400$
(d) $1,53,500$
(e) $2,88,400$

Directions (6-10): What approximate value will come in place of $(x)$ in the following questions?

Q6. 79.99\% of $899.99+(16.02)^{2} \times 3.99 x=(10.97)^{3}-98.96$
(a) 1
(b) 1.5
(c) 0.5
(d) 2
(e) 0


Q7. $\frac{3}{4} \times(15.99)+31.99 \%$ of $3199+294.9=x^{3}$
(a) 10
(b) 11
(c) 12
(d) 15
(e) 8

Q8. $\sqrt[3]{511}+\sqrt{323}+\sqrt[3]{1130}=x$
(a) 32
(b) 34
(c) 37
(d) 28
(e) 30

Q9. $35 \%$ of $3500-12 \%$ of $5000=x^{2}$
(a) 22
(b) 23
(c) 25
(d) 28
(e) 30

Q10. $(0.449)^{2} \times 12.49 \%$ of $(3.99)^{3}-3 \sqrt{x}=\sqrt{x}$
(a) $1 / 4$
(b) $1 / 2$
(c) 2
(d) 4
(e) 5

Q11.The number of ways in which a committee of 5 can be chosen from 6 male and 5 female candidates such that there is at most three male candidates in the committee.
(a) 318
(b) 381
(c) 385
(d) 391
(e) 481

Q12. A number is selected at random from the first 35 natural numbers. What is the probability that it is either a multiple of 5 or a multiple of 7 ?
(a) $14 / 35$
(b) $11 / 35$
(c) $12 / 35$
(d) $17 / 35$
(e) $23 / 35$

Q13. Three cards are drawn from a pack of cards at random. What is the probability that they consist of two different colours?
(a) $11 / 17$
(b) $13 / 17$
(c) $13 / 15$
(d) $15 / 17$
(e) $13 / 24$

Q14. All possible four-digit numbers, with distinct digits are formed, using the digits $\{1,3,4$, $5,6\}$. How many of them are divisible by 5 ?
(a) 8
(b) 12
(c) 24
(d) 20
(e) 28

Q15. In a bag there are three pink and five white bolls. Three bolls are chosen randomly. What is the probability that at least one is pink and atmost two are white?
(a) $11 / 28$
(b) $23 / 28$
(c) $13 / 28$
(d) $15 / 28$
(e) None of these


S(1-5)

| State | Male | Female |
| :--- | :--- | :--- |
| A | 90,000 | $1,08,000$ |
| B | $1,62,500$ | $1,35,000$ |
| C | 90,000 | $1,18,800$ |
| D | $1,30,000$ | $1,20,000$ |
| E | 91,000 | $1,04,000$ |
| F | $1,58,400$ | $1,30,000$ |



S1. Ans.(d)
Sol.

$$
\begin{aligned}
& \text { Required percentage }=\frac{1,35,000-90,000}{1,35,000} \times 100 \\
& =\frac{45,000}{1,35,000} \times 100=33 \frac{1}{3} \%
\end{aligned}
$$

S2. Ans.(c)
Sol.

$$
\text { Required ratio }=\frac{90,000}{1,30,000}=9: 13
$$

S3. Ans.(b)
Sol.
Total population of state $=1,30,000+1,20,000=2,50,000$
S4. Ans.(a)
Sol.
Average of female population of
state A, B and D together
$=\frac{108000+135000+120000}{3}$
$=121000$

S5. Ans.(e)
Sol.
Total population of $\mathrm{F}=1,58,400+1,30,000=2,88,400$
S6. Ans.(c)
Sol.
$\approx \frac{80}{100} \times 900+(16 \times 16) \times 4 x=(11)^{3}-99$
$\approx 720+1024 x=1331-99$
$\approx 1024 x=1331-99-720$
$\approx x=0.5$


S7. Ans.(b)
Sol.
$\approx \frac{3}{4} \times 16+\frac{32}{100} \times 3200+295=x^{3}$
$\approx 12+1024+295=x^{3}$
$\approx 1331$
$\approx x=11$

S8. Ans.(c)
Sol.

$$
\begin{aligned}
& \approx 8+18+11=x \\
& \approx x=37
\end{aligned}
$$

S9. Ans.(c)
Sol.
$\approx \frac{35}{100} \times 3500-\frac{12}{100} \times 5000=x^{2}$
$\approx x=25$

S10. Ans.(a)
Sol.
$\approx \frac{1}{4} \times \frac{1}{8} \times 4^{3}$
$\approx 2=4 \sqrt{x}$
$\approx x=\frac{1}{4}$

S11. Ans.(b)
Sol.
Total ways
$=(5 \mathrm{~F}, 0 \mathrm{M})$ or $(4 \mathrm{~F}, 1 \mathrm{M})$ or (3F,2 M) or (2F, 3 M$)$
$={ }^{5} C_{5}+{ }^{5} C_{4} \times{ }^{6} C_{1}+{ }^{5} C_{3} \times{ }^{6} C_{2}+{ }^{5} C_{2} \times{ }^{6} C_{3}$
$=381$

S12. Ans.(b)
Sol. Number may be of $5,10,15,20,25,30,35$ or $7,14,21,28,35$
$\therefore$ Required probability $=\frac{7}{35}+\frac{5}{35}$
$=\frac{12}{35}$
S13. Ans.(b)
Sol.
Possible number of ways = Two black
and one red or one black and two red.
$={ }^{26} \mathrm{C}_{2} \times{ }^{26} \mathrm{C}_{1}+{ }^{26} \mathrm{C}_{1} \times{ }^{26} \mathrm{C}_{2}$
$=2 \times 13 \times 25 \times 26$
Total number of ways $={ }^{52} \mathrm{C}_{3}$
$=\frac{52 \times 51 \times 50}{1 \times 2 \times 3}$
$=20 \times 17 \times 50$
Probability of the event
$=\frac{2 \times 13 \times 25 \times 26}{26 \times 17 \times 50}=\frac{13}{17}$

Sol.
Consider four blanks
The units place is filled with 5 . The remaining three blanks can be filled with 4 digits in ${ }^{4} P_{3}$ ways.
$\therefore$ The number of four-digit numbers required is 24 .

S15. Ans.(b)
Sol.
3P, 5W
Favorable cases
$=(1 \mathrm{P}$ and 2 W$)$ or $(2 \mathrm{P}$ and 1 W$)$ or (3P)
Required probability
$=\frac{{ }^{3} \mathrm{C}_{1} \times{ }^{5} \mathrm{C}_{2}}{{ }^{8} \mathrm{C}_{3}}+\frac{{ }^{3} \mathrm{C}_{2} \times{ }^{5} \mathrm{C}_{1}}{{ }^{8} \mathrm{C}_{3}}+\frac{{ }^{3} \mathrm{C}_{3}}{{ }^{8} \mathrm{C}_{3}}$
$=\frac{3 \times 10 \times 6}{8 \times 7 \times 6}+\frac{3 \times 5 \times 6}{8 \times 7 \times 6}+\frac{6}{8 \times 7 \times 6}$
$=\frac{46}{56}=\frac{23}{28}$


