S1. Ans.(b)
Sol.
(i) $\mathrm{x}^{2}=529-385$
$x^{2}=144$
$\mathrm{x}=+12,-12$
(ii) $2 \mathrm{y}^{2}+51 \mathrm{y}+324=0$
$2 y^{2}+24 y+27 y+324=0$
$y=-12,-\frac{27}{2}$
$\therefore \mathrm{x} \geq \mathrm{y}$
S2. Ans. (c)
Sol.
(i) $3 x^{2}-58 x+280=0$
$3 \mathrm{x}^{2}-28 \mathrm{x}-30 \mathrm{x}+280=0$
$\mathrm{x}(3 \mathrm{x}-28)-10(3 \mathrm{x}-28)=0$
$x=10, \frac{28}{3}$
(ii) $3 y^{2}-67 y+374=0$
$3 y^{2}-33 y-34 y+374=0$
$y=11, \frac{34}{3}$
$\therefore \mathrm{y}>\mathrm{x}$
S3. Ans. (e)
Sol.
(i) $25 x^{2}-25 x-176=0$
$25 \mathrm{x}^{2}-80 \mathrm{x}+55 \mathrm{x}-176=0$
$\mathrm{x}=\frac{-11}{5}, \frac{+16}{5}$
(ii) $25 y^{2}-55 y+18=0$
$25 y^{2}-10 y-45 y+18=0$
$\mathrm{y}=\frac{2}{5}, \frac{9}{5}$
\therefore No relation

S4. Ans.(e)
Sol.
(i) $20 x^{2}-41 x+20=0$
$20 \mathrm{x}^{2}-25 \mathrm{x}-16 \mathrm{x}+20=0$
$\mathrm{x}=\frac{5}{4}, \frac{4}{5}$
(ii) $16 \mathrm{y}^{2}-22 \mathrm{y}+7=0$
$16 y^{2}-14 y-8 y+7=0$
$\mathrm{y}=\frac{1}{2}, \frac{7}{8}$

S5. Ans. (c)

Sol.
(i) $2 x-y=\frac{31}{15}$
(ii) $3 x+5 y=20$

Solving (i) and (ii)
$x=\frac{7}{3}, y=\frac{13}{5}$
$\therefore \mathrm{y}>\mathrm{x}$

S6. Ans.(a)

Sol. Area of rectangular field $=\frac{\text { Total sum }}{\text { Amount } / \mathrm{m}^{2}}$
$=\frac{1000}{0.25}=4000 \mathrm{~m}^{2}$
\therefore Length of rectangular field $=\frac{\text { Area }}{\text { Breadth }}=\frac{4000}{50}=80 \mathrm{~cm}$
Since, the length is increased by 20 m
\therefore New length $=80+20=100 \mathrm{~m}$
New area $=100 \times 50=5000 \mathrm{~m}^{2}$
New Expenditure $=5000 \times \frac{25}{100}=1250$ Rs.

S7. Ans(c)

Sol. Three years SI on $15 \%=15 \times 3=45 \%$
Equivalent two years CI on $8 \%=8+8+\frac{8 \times 8}{100}=16.64 \%$
Equivalent two years CI on $20 \%=20+20+\frac{20 \times 20}{100}=44 \%$
ATQ -
$\frac{44(2 P+8000)}{100}-\left(\frac{45 P}{100}+\frac{16.64(P+8000)}{100}\right)=5352$
$88 \mathrm{P}+3520-.45 \mathrm{P}-.1664 \mathrm{P}-1331.2=5352$
$2636 \mathrm{P}=3163.2$
$\mathrm{P}=\frac{3163,2}{.2636}=12000 \mathrm{Rs}$.
Suresh borrowed $=12000 \times 2+8000=32000$ Rs

S8. Ans.(c)

Sol. Lets speed of train P, Q and R be S_{1}, S_{2} and S_{3} respectively
Speed of train $P\left(S_{1}\right)=\frac{180}{\frac{27}{4}} \mathrm{~m} / \mathrm{s}=\frac{80}{3} \frac{\mathrm{~m}}{\mathrm{~s}}$
Speed of train $\mathrm{Q}\left(\mathrm{S}_{2}\right)$
$\frac{80}{3}+S_{2}=\frac{240+180}{9}$
$\mathrm{S}_{2}=\frac{420}{9}-\frac{80}{3}$
$\mathrm{S}_{2}=20 \mathrm{~m} / \mathrm{s}$

Speed of train R $\left(S_{3}\right)$
$\frac{80}{3}-S_{3}=\frac{210+180}{39}$
$\mathrm{S}_{3}=\frac{80}{3}-10$
$\mathrm{S}_{3}=\frac{50}{3} \mathrm{~m} / \mathrm{s}$
Lets required time be T sec
Required time $=20+\frac{50}{3}$
$=\frac{240+210}{\mathrm{~T}}$
$\frac{110}{3}=\frac{450}{\mathrm{~T}}$
$\mathrm{T}=\frac{450 \times 3}{110}$
$\mathrm{T}=12 \frac{3}{11} \mathrm{sec}$

S9. Ans.(e)

Sol. A got 40\% of profit
B \& C got 30\% each
So investment ratio of A, B and C is $4: 3: 3$
Now,
They earn 10\% profit
$\Rightarrow \frac{10 \mathrm{x} \times 10}{100}=\mathrm{x}$
If they earn 15% profit
$=\frac{10 \mathrm{x} \times 15}{100}=\frac{3}{2} \mathrm{x}$
A got 900 Rs. more
$\Rightarrow \frac{3}{2} \times \times \frac{40}{100}-\frac{\mathrm{x} \times 40}{100}=900$
$\Rightarrow \mathrm{x}=4500$
Total investment $=45000$
B's investment $=\frac{45000 \times 3}{10}=13500$

S10. Ans.(a)

Sol. Speed of tractor $=\frac{360}{12}=30 \mathrm{~km} / \mathrm{hr}$
Speed of jeep $=\frac{250}{100} \times 75 \mathrm{~km} / \mathrm{hr}$
\because Ratio of speed of Car, Jeep, and Tractor is $3: 5: 2$
\therefore Speed of car $=3 \times 15=45 \mathrm{~km} / \mathrm{hr}$
Required average speed of Car and Jeep $=\frac{75+45}{2}=60 \mathrm{~km} / \mathrm{hr}$

S11. Ans.(a)

Sol. $\frac{53}{3}-\frac{41}{5}-\frac{48}{5}+?=\frac{8}{15}$
? $=\frac{8}{15}-\frac{53}{3}+\frac{89}{5}$
$?=\frac{2}{3}$

TEST SERIES

Bilingual

S12. Ans.(b)

Sol. $13-34+15=$?
? = -6

S13. Ans.(c)

Sol. $\frac{25}{100} \times 650-\frac{65}{100} \times 250=?-5$
? = 5

S14. Ans.(c)
Sol. $36 \times 36+144-30=$?
$1296+144-30=$?
? $=1410$

S15. Ans.(b)

Sol. $18-12 \times 16 \times \frac{1}{24}+5=$?
$18-8+5=$?
? $=15$

S16. Ans.(d)

Sol. Number of Accord cars sold by dealers D and E together
$=\left(\frac{6}{21} \times \frac{14}{100}+\frac{3}{14} \times \frac{21}{100}\right) \times 12000=480+540=1020$
Number of City cars sold by dealers B and F together
$=\left(\frac{3}{10} \times \frac{15}{100}+\frac{6}{15} \times \frac{20}{100}\right) \times 12000=540+960=1500$
Required Difference $=1500-1020=480$

S17. Ans.(b)

Sol. Number of Accord and Civic cars sold by dealer A together $=\frac{6}{9}$ of $12 \%=8 \%$
Number of Civic and City cars sold by dealer D together $=\frac{15}{21}$ of $14 \%=10 \%$
Required Percentage $=\frac{8}{10} \times 100=80 \%$

S18. Ans.(c)

Sol. Total number of Civic cars sold by dealers A, B, D and E together
$=\left(\frac{2}{9} \times \frac{12}{100}+\frac{4}{10} \times \frac{15}{100}+\frac{8}{21} \times \frac{14}{100}+\frac{6}{14} \times \frac{21}{100}\right) \times 12000=320+720+640+1080=2760$
Required Average $=\frac{2760}{4}=690$

S19. Ans.(b)

Sol. Civic and City cars sold together by dealer $B=\frac{7}{10}$ of $15 \%=\frac{21}{2} \%$
Civic and City cars sold together by dealer $E=\frac{11}{14}$ of $21 \%=\frac{33}{2} \%$
Required Ratio $=\frac{21}{2} \%: \frac{33}{2} \%=7: 11$

Dealer $B=\frac{3}{10}$ of $15 \%=4.5 \%$
Dealer $\mathrm{C}=\frac{4}{15}$ of $18 \%=4.8 \%$
Dealer $\mathrm{D}=\frac{7}{21}$ of $14 \%=4.67 \%$
Dealer $E=\frac{5}{14}$ of $21 \%=7.5 \%$
Dealer $\mathrm{F}=\frac{6}{15}$ of $20 \%=8 \%$
Hence, dealer A sold the minimum number of City cars.

adda
 publications

BIDKS

Visit: publications.adda247.com \& store.adda247.com
For any information, mail us at publications@adda247.com

