Quiz - 1

S1. Ans.(b)
Sol.
Let speed of bus and car be $6 \mathrm{xkm} / \mathrm{hr}$ and $7 \mathrm{xkm} / \mathrm{hr}$ respectively So,
$(7 x-6 x) \times 4=28$
$\mathrm{x}=7$
Required time $=\frac{196}{7 \times 7}=4$ hours
S2. Ans.(e)
Sol.
One day work of Veer $=\frac{1}{x}$
3 day work of Veer $=\frac{3}{x}$
One day work of Sameer $=\frac{1}{(x+4)}$
4 day work of Sameer $=\frac{4}{x+4}$
ATQ,
$\frac{\frac{3}{x}}{\frac{4}{(x+4)}}=\frac{15}{16}$
$(3 x+12) 16=60 x$
$48 x+192=60 x$
$\mathrm{x}=16$

S3. Ans.(c)
Sol.
Let length of train $A=$ length of $\operatorname{train} B=\ell m$
ATQ,
$\Rightarrow \frac{\ell+98}{24}=\frac{\ell}{12} \times \frac{120}{100}$
$\ell=70 \mathrm{~m}$

S4. Ans.(a)
Sol.
Let speed of boat in still water $=11 x$
Speed of stream $=x$
Now ATQ,
$\frac{220}{(11 x-x)}-\frac{220}{11 x}=1$
$\frac{220}{10 x}-\frac{220}{11 x}=1$
$\frac{1}{x}(22-20)=1$
$x=2$

BANK

So speed of boat in still water $=11 \times 2=22 \mathrm{~km} / \mathrm{hr}$
S5. Ans.(b)
Sol. Let capacity of tank $=180$ lit (L.C.M of 12,10, and 18)

Efficiency of C (leak) = 10-15-18=-23 lit/h.
-ve sign indicate that water is leaking.
$23 \mathrm{lit} / \mathrm{h}$ units $=\frac{23}{60} \mathrm{lit} / \mathrm{min}$ units $=46 \mathrm{lit} / \mathrm{min}$.
180 units $=\frac{46 \times 60180}{23}=21600$ lit

S6. Ans(a)
Sol. let total work $=96$ units (multiple of 16)
Let efficiency of Hemant $=4 x$ units $/$ day
Then, efficiency of Manoj and Vikash = 3x units/day and $2 x$ units/day respectively
ATQ
$4 x+2 x=\frac{96}{16}$
$6 x=6$
$x=1$
Required time $=\frac{96}{3 \times 1 \times \frac{150}{100}}=21 \frac{1}{3}$ days.
S7. Ans(b)
Sol. let speed of trains - A \& B are $\mathrm{x} \mathrm{m} / \mathrm{s}$ and $\mathrm{y} \mathrm{m} / \mathrm{s}$ respectively.
ATQ
$5 x+5 y=850$
$x+y=170$
And
$x-y=\frac{850}{\frac{85}{3}}$
$x-y=30$
From (i) and (ii)
$x=100 \mathrm{~m} / \mathrm{s}$ and $y=70 \mathrm{~m} / \mathrm{s}$
Required ratio $=\frac{5 \times 100}{5 \times 70}=10: 7$

S8. Ans.(e)
Sol. Time taken by train to cross a pole $=\frac{1}{1200} \times 60 \times 60=3 \mathrm{sec}$.
When speed is constant then ratio of time taken is directly proportional to Distance covered
So, Ratio of length of train to length of (train + tunnel)
$\Rightarrow 3: 10$
Let length of train $=3 x$
Length of tunnel $=10 x-3 x=7 x$
ATQ,
$7 x-3 x=200$
$4 x=200$
So, $3 x=150$ meter
Speed of train $=\frac{150}{3}=50 \mathrm{~m} / \mathrm{sec}$.
S9. Ans (b)
Sol. Let total work be 60 units
So, efficiency of $\mathrm{A}=4$ units/day
And efficiency of $B=3$ units/day
Let efficiency of $C=x$ units/day
ATQ
$(4+3+x) \times 6=60$
$x=3$ units/day
ratio of efficiency of $\mathrm{A}: \mathrm{B}: \mathrm{C}=4: 3: 3$
C's share in wage $=\frac{3}{10} \times 5400=R s 1620$
S10. Ans (c)
Sol. Let total capacity of the tank be 60 units (LCM of 15, 60, 10)
Now, efficiency of the First, second and third pipe be 4 units/min, 1 units/min and 6 units/min respectively.
Tank filled in first $10 \mathrm{~min}=(4+1) \times 10=50$ units
Now, when all the pipe work together, 1 unit of water will out in every minute from tank.
So, 50 units of water will be emptied in 50 min .
S11. Ans (d)
Sol. Let the length of train be L meter.
ATQ
$25=\frac{5 L+L}{90 \times \frac{5}{18}}-\frac{L}{90 \times \frac{5}{18}}$
$25=\frac{6 L}{25}-\frac{L}{25}$
$5 L=625$
$L=\frac{625}{5}=125 \mathrm{~m}$
S12.Ans (c)
Sol.

Downstream speed of boat $=11.2 \times \frac{60}{48}=14 \mathrm{~km} / \mathrm{hr}$
Speed of boat $=14 \times \frac{3}{4}=10.5 \mathrm{~km} / \mathrm{hr}$
Speed of current $=14 \times \frac{1}{4}=3.5 \mathrm{~km} / \mathrm{hr}$
Required time $=\frac{42}{(10.5+3.5)}+\frac{42}{(10.5-3.5)}$
$=3+6$
$=9$ hours

S13. Ans (a)
Sol. Let the total capacity of the cistern is 24 units. (LCM)
So, the efficiency of the pipe A and pipe B are 2 units/ hour and 3 units/hour respectively.
ATQ
Total time taken to fill the cistern $=\frac{24}{2+3}+\frac{12}{60}=5$ hour
Efficiency of leakage $=(2+3)-\frac{24}{5}$ units $/$ hour
$=\frac{1}{5}$ units $/$ hour
\therefore time taken by leakage to empty the full tank alone $=\frac{24}{\frac{1}{5}}=120$ hours
S14. Ans (c)
Sol. Let speed of the boat in still water and speed of the current be $x \mathrm{~km} / \mathrm{hr}$ and $\mathrm{y} \mathrm{km} / \mathrm{hr}$ respectively.
ATQ
$\frac{30}{x-y}+\frac{45}{x+y}=13 \ldots \ldots .(i)$
$\frac{24}{x-y}+\frac{30}{x+y}=10$
By equating (i) and (ii)
$\frac{300}{x-y}+\frac{450}{x+y}=\frac{312}{x-y}+\frac{390}{x+y}$
$\frac{60}{x+y}=\frac{12}{x-y}$
$\frac{x}{y}=\frac{3}{2}$
Let $\mathrm{x}=3 \mathrm{a}$ and $\mathrm{y}=2 \mathrm{a}$
Now, $\frac{30}{3 a-2 a}+\frac{45}{3 a+2 a}=13$
$\frac{30}{a}+\frac{45}{5 a}=13$
$a=3$
\therefore speed of the current $=6 \mathrm{~km} / \mathrm{hr}$
S15. Ans (d)
Sol. Let total work be 60 units (LCM)
So, efficiency of Raghav and Dev be 4 units/day and 3 units/day respectively.
4 -day work of Raghav and $\operatorname{Dev}=(4+3) \times 4=28$ units
Remaining work $=60-28=32$ units
So, fraction of work left $=\frac{32}{60}=\frac{8}{15}$

Quiz - 2

S1. Ans.(b)
Sol.
Word are $=(3-\mathrm{I}, 2-\mathrm{N}, 1-\mathrm{T}, 2-\mathrm{C}, 1-\mathrm{O})$
Required no. of ways $=\frac{8!}{3!\times 2!\times 2!}=1680$
S2. Ans.(e)
Sol.
Total two digits number $=90$
Multiple of $3=\{12,15,18, \ldots \ldots 99\}=30$
Multiple of $12=\{12,24,36, \ldots \ldots 96\}=8$
Favorable events $=30-8=22$
Required probability $=\frac{22}{90}=\frac{11}{45}$
S3. Ans.(a)
Sol. Let length and breadth of rectangular field $=4 \mathrm{x}$ and 9 x respectively
ATQ,
$2 \times(4 x+9 x) \times 4=208$
$\mathrm{x}=2$
Area of are rectangular field $=4 \times 2 \times 9 \times 2=144 \mathrm{~m}^{2}$.

S4. Ans(a)
Sol. required probability $=\frac{13}{52} \times \frac{12}{51}+\frac{4}{52} \times \frac{3}{51}$
$=\frac{156+12}{52 \times 51}$
$=\frac{14}{221}$
S5. Ans(c)
Sol. circumference of circle of radius ' r ' $=2 \pi r=22 \sqrt{2} \times \sqrt{ } 2$
$\Rightarrow 2 \pi r=22 \times 2$
$r=7 \mathrm{~cm}$
Area of circle $\left(\pi r^{2}\right)=\frac{22}{7} \times 7 \times 7$
$=154 \mathrm{~cm}^{2}$

S6. Ans.(d)
Sol.
Let the length be 5 xcm
And breadth $=4 \mathrm{x} \mathrm{cm}$
ATQ,
$5 x \times 4 x-(5 x+3)\left(4 x \times \frac{5}{8}\right)=150$
$\Rightarrow 20 x^{2}-(5 x+3) \times \frac{5 x}{2}=150$
$\Rightarrow 20 x^{2}-\frac{25 x^{2}}{2}-\frac{15 x}{2}=150$
$\Rightarrow 15 x^{2}-15 x=300$
$\Rightarrow x^{2}-\mathrm{x}-20=0$
$\Rightarrow x^{2}-5 x+4 x-20=0$
$\Rightarrow \mathrm{x}(\mathrm{x}-5)+4(\mathrm{x}-5)=0$
$\Rightarrow x=5$
Required perimeter $=2(5 x+4 x)=2 \times 9 \times 5=90 \mathrm{~cm}$
S7. Ans.(d)
Sol. Minimum amount will be when all coins are one-rupee coin
Required probability $=\frac{{ }^{7} C_{3}}{{ }^{22} C_{3}}=\frac{7 \times 6 \times 5}{22 \times 21 \times 20}=\frac{1}{44}$
S8. Ans.(c)
Sol. Let length \& breadth of Rectangular park are ' a ' meter and ' b ' meter respectively.
ATQ,
$\mathrm{a}^{2}+\mathrm{b}^{2}=(26)^{2}$
$a^{2}+b^{2}=676 \ldots$ (i)
and $2(a+b)=68$
$a+b=34$
$\mathrm{a}^{2}+\mathrm{b}^{2}+2 \mathrm{ab}=1156$
using (i) in (ii)
$2 \mathrm{ab}=1156-676$
$2 \mathrm{ab}=480$
Area of park $(\mathrm{ab})=\frac{480}{2}=240 \mathrm{~m}^{2}$
S9. Ans (a)
Sol. Total outcomes $(N)=6^{3}=216$
The favorable conditions $=(6,5,6),(6,6,5),(5,6,6)=3$
Required probability $=\frac{3}{216}=\frac{1}{72}$

S10. Ans.(d)
Sol.
Let length of rectangle $=3 x$ unit
Then, breadth of rectangle $=x$ unit
Atq,
$\frac{3 x \times x}{2 \times(3 x+x)}=\frac{9}{2}$
$\frac{3 x^{2}}{8 x}=\frac{9}{2}$
$6 x^{2}=72 x$
$\mathrm{x}=12$
area of rectangle $=3 \mathrm{x}^{2}$
$=3 \times 144$
$=432$ unit 2

S11. Ans.(c)
Sol.
Boys in school - A \& E together $=\frac{720}{9} \times 11+350 \times \frac{8}{7}$
$=880+400$
$=1280$
Boys in school - B \& C together $=540 \times \frac{3}{2}+270 \times \frac{7}{3}$
$=810+630$
$=1440$
Required ratio $=\frac{1280}{1440}$
$=\frac{8}{9}=8: 9$
S12. Ans.(e)
Sol.
Average number of girls in school - B, C \& D $=\frac{540+270+576}{3}$
$=462$
Average number of students in school - A \& D $=\frac{1}{2}\left[720 \times \frac{20}{9}+576 \times \frac{25}{12}\right]$
$=\frac{1}{2}[1600+1200]$
$=1400$
Required \% $=\frac{462}{1400} \times 100$
= 33\%

S13. Ans.(d)
Sol.
Students in school - B $=540 \times \frac{5}{2}$
$=1350$
Girls in school - E and boys in school - D together $=350+576 \times \frac{13}{12}$
$=350+624=974$
Required difference $=1350-974=376$

S14. Ans.(d)
Sol.
Students in school - C \& E together $=\left[270 \times \frac{10}{3}+350 \times \frac{15}{7}\right]$
$=900+750$
$=1650$
Required \% $=\frac{1650-720}{720} \times 100$
$=\frac{930}{720} \times 100$
$=\frac{775}{6} \%$
$=129 \frac{1}{6} \%$

S15. Ans.(a)
Sol.
Girls in school - A \& D together $=720+576=1296$
Boys in school - A \& E together $=720 \times \frac{11}{9}+350 \times \frac{8}{7}$
$=880+400$
$=1280$
Required \% $=\frac{1296}{1280} \times 100$
$=\frac{405}{4} \%$
$=101 \frac{1}{4} \%$

Quiz - 3

S1. Ans.(b)
Sol.
$\frac{?}{4} \times \frac{3}{5} \times \frac{24}{25} \times 625=3125 \times 54$
\Rightarrow ? $=\frac{3125 \times 54}{90}$
\Rightarrow ? $=1875$

S2. Ans.(a)
Sol.
? = $13456-11342$
\Rightarrow ?= 2114

S3. Ans.(d)
Sol.
$4^{?} \times\left(4^{5}\right)=4^{4} \times 4^{5}$
$\Rightarrow 4^{?}=4^{4}$
\Rightarrow ? $=4$
S4. Ans.(e)
Sol.
? $=396+224-64$
\Rightarrow ? $=556$

S5. Ans.(d)
Sol.
? $=32+28-9$
? $=51$
S6. Ans.(c)
Sol.

Bank Prime Test Pack

$\frac{56 \times 55}{100}+\frac{?}{100} \times 132.8=64$
$30.8+\frac{?}{100} \times 132.8=64$
? $=\frac{33.2 \times 100}{132.8}$
IBPS | SBI | LIC | RBI | Others
1200+ Total Tests

S7. Ans.(d)
Sol.
$280+?=784-24$
? $=760-280$
$?=480$
S8. Ans.(d)
Sol.
$\frac{?}{32.5}+1024+\frac{80}{100} \times 317.5=1296$
$\frac{?}{32.5}=1296-1024-254$
$\frac{?}{32.5}=18$
?= 585

S9. Ans.(a)
Sol.
$94.5+98+$? $=196$
? = 196-192.5
? $=3.5$

S10. Ans.(b)
Sol.
$\frac{41}{100} \times 2560+\frac{32}{100} \times 388.75=1156+$?
$1049.6+124.4-1156=$?
? $=1174-1156$
? $=18$

S11. Ans.(a)
Sol.
$144+256+90=?^{2}+6$
$490=?^{2}+6$
$?^{2}=484$
? $=22$

S12. Ans.(b)
Sol.
$(3+5-2)+\frac{2+1-2}{14}$
$=6 \frac{1}{14}$
S13. Ans.(e)
Sol.
$\frac{?}{100} \times 37.5+175=\frac{25}{100} \times 760$
$\frac{?}{100} \times 37.5=190-175$
$?=\frac{1500}{37.5}$
? $=40$

S14. Ans.(c)
Sol.
$2813-?=484+10$
? $=2813-494$
? $=2319$

S15. Ans.(a)
Sol.
$\frac{783}{?}=190+29.25-175.75$
$?=\frac{783}{43.5}$
? $=18$

Quiz - 4

S1. Ans. (a)
Sol. Let efficiency of B be $5 x$ units/day
So, efficiency of $A=\frac{80}{100} \times 5 x$
$=4 x$ units $/$ day
And, efficiency of $C=\frac{120}{100} \times 5 x$
$=6 x$ units $/$ day
Total work $=(5 x \times 12)$
$=60 \mathrm{x}$ units
1 day wage of $A, B \& C$ together $=\frac{15 x}{60 x} \times 600$
= Rs. 150
Required difference $=150 \times 4 \times \frac{6 x-4 x}{15 x}$
= Rs. 80
S2. Ans. (d)
Sol. ATQ,
$\frac{\left(100-20-X \times \frac{100-20}{100}\right)}{\left(20-X \times \frac{20}{100}+X\right)}=\frac{14}{11}$
$\frac{\left(80-\frac{4 X}{5}\right)}{\left(20+\frac{4 X}{5}\right)}=\frac{14}{11}$
$X=30$

S3. Ans. (e)
Sol. Required probability $=\frac{12 c_{3}}{52_{c_{3}}}$
$=\frac{11}{1105}$
S4. Ans. (b)
Sol. Let radius of cylinder \& cone be $2 \mathrm{xcm} \& 3 \mathrm{x} \mathrm{cm}$ respectively.
So, height of cylinder $=2 x \times \frac{5}{2}$
$=5 \mathrm{xcm}$

ATQ,
$\frac{\left(\frac{22}{7} \times(2 x)^{2} \times 5 x\right)}{\left(\frac{22}{7} \times \frac{1}{3} \times(3 x)^{2} \times 14\right)}=\frac{10}{3}$
$x=7$
Required area $=2 \times \frac{22}{7} \times 2 \times 7 \times 5 \times 7$
$=3080 \mathrm{~cm}^{2}$

S5. Ans. (d)
Sol. Let A be 100x.
So, $C=\frac{75}{100} \times 100 x \times \frac{100}{40}$
$=\frac{375 x}{2}$
And, $B=100 x \times \frac{100}{80}$
$=125 x$
ATQ,
$\frac{50}{100} \times 125 x+\frac{30}{100} \times \frac{375 x}{2}=95$
$62.5 x+56.25 x=95$
$x=0.8$
Required value $=\frac{80}{100} \times 100 \times 0.8$
$=64$

S6. Ans. (d)
Sol. Let total capacity of tank be 400 units (LCM of $\frac{100}{9}$ and 16).
So, efficiency of pipe $-Q=\frac{400}{16}$
= 25 units/hour
And, efficiency of P \& R together $=400 \times \frac{9}{100}$
$=36$ units / hour
Required time $=\frac{400}{36-25}$
$=\frac{400}{11}$ hours
S7. Ans. (e)
Sol. Let cost price of article - A be Rs. 100 x
So, marked price of article $-\mathrm{A}=100 x \times \frac{160}{100}$
= Rs.160x
And, selling price of article $-\mathrm{A}=160 x \times \frac{80}{100}$
= Rs. 128 x
ATQ,
$(160 x-128 x)-(128 x-100 x)=20$
$x=5$
Now, CP of article - B $=100 \times 5 \times \frac{100}{80}$
= Rs. 625

S8. Ans. (b)
Sol. Let marks scored by Aman in each of English \& Hindi be x.
ATQ,
Aman's marks in Math $=(70 \times 3)-2 x$
$=210-2 x$
And, Aman's marks in Science $=\left(\frac{250}{3} \times 3\right)-2 x$
$=250-2 x$
Required difference $=(250-2 x)-(210-2 x)$
$=40$

S9. Ans. (a)
Sol. Required ways $=8_{c_{3}} \times 5_{c_{2}}$
$=560$ ways

S10. Ans. (d)
Sol. Let length of train - A \& B be $4 x$ meters and $5 x$ meters respectively.
ATQ,
$\frac{4 x+5 x}{90}=36 \times \frac{5}{18}$
$x=100$
Speed of train - A $=\frac{(4 \times 100)+200}{24}$
$=25 \mathrm{~m} / \mathrm{sec}$
So, speed of train - B $=25 \times \frac{18}{5}+36$
$=126 \mathrm{~km} / \mathrm{hr}$.

S11. Ans. (a)
Sol. Mouse sold by store in $2017 \& 2018$ together $=4500+6000$
= 10500
Keyboard sold by store in $2017 \& 2018$ together $=4000+5000$
$=9000$
Required $\%=\frac{10500-9000}{9000} \times 100$
$=16 \frac{2}{3} \%$

S12. Ans. (d)
Sol. Average of Mouse, Printer and Speaker sold by store in $2017=\frac{4500+3000+6000}{3}$
$=4500$
Keyboard and Printer together sold by store in $2019=(4500+6000)$
$=10500$
Required ratio $=\frac{4500}{10500}$
= 3 : 7

S13. Ans. (c)
Sol. Mouse, UPS \& Speakers together sold by store in $2019=8000+500+5000$ $=13500$
Printer \& Speakers together sold by store in $2018=4000+4500$
$=8500$
Required difference $=13500-8500$
$=5000$

S14. Ans. (e)
Sol. UPS sold by store in 2017, 2018 \& 2019 together $=2000+1000+500$
$=3500$
Printers sold by store in $2017 \& 2018$ together $=3000+4000$
$=7000$
Required \% $=\frac{3500}{7000} \times 100$
= 50\%

S15. Ans. (c)
Sol. Required revenue $=(8000 \times 150)+(500 \times 800)$
$=12,00,000+4,00,000$
$=$ Rs. $16,00,000$ or 16 lacs

Quiz - 5

S1. Ans.(e)
Sol.
$\approx \frac{21}{100} \times 1300+5 x=\frac{52}{100} \times 4400$
$273+5 x=2288$
$5 x=2288-273$
$x=\frac{2015}{5}$
$x=403$
S2. Ans.(a)
Sol.
$\approx 3 \times 5+\frac{55}{5}+x=78 \times 2$
$\approx 15+11+x=156$
$\approx x=130$

S3. Ans.(a)
Sol.
$\approx \frac{4 x+30}{25}+230=320$
$\approx \frac{4 x+30}{25}+230=320$
$\approx \frac{4 x+30}{25}=90$
$\approx 4 x+30=90 \times 25$
$4 x=2250-30$
$4 x=2220$
$x=555$

S4. Ans.(e)
Sol.
$16 \sqrt{?}+69 \sqrt{?}-10 \sqrt{?} \approx \frac{75}{34} \times(?)$
$75 \sqrt{?}=\frac{75}{34} \times(?)$
$\Rightarrow \sqrt{?}=\frac{?}{34}$
$\Rightarrow \sqrt{?}=34$
\Rightarrow ? $=(34)^{2}$
\Rightarrow ? $=1156$
S5. Ans.(b)
Sol.
56.08% of $149.92+\sqrt{28.02 \times 6.98}-11 \frac{1}{9} \% 998.9=$?
56% of $150+\sqrt{28 \times 7}-\frac{1}{9} \times 999 \approx$?
$84+14-111=-13$
S6. Ans.(c)
Sol.
79.98% of $?=\sqrt{249.98 \times 44.04+40 \% \text { of } 8499}$
80% of $? \simeq \sqrt{250 \times 44+\frac{40 \times 8500}{100}}$
$\Rightarrow \frac{80}{100} \times ? \simeq \sqrt{11000+3400}$
\Rightarrow ? $\simeq \sqrt{14400} \times \frac{10}{8}$
$\Rightarrow ? \simeq 120 \times \frac{10}{8}=150$
S7. Ans.(a)
Sol.
$? \times 40.01 \div 24.02 \times 27.05=\frac{593.93}{114.94} \times \frac{2299}{263.98}$
$\Rightarrow ? \times \frac{40}{24} \times 27 \simeq \frac{594}{115} \times \frac{2300}{264}$
$\Rightarrow ? \times 45 \simeq 45$
\Rightarrow ? $=1$
S8. Ans.(d)
Sol.
19.99\% of $(40.01 \times \sqrt{?})=(31.99)^{2}+(16.01)^{2}$
$\Rightarrow \frac{20}{100} \times 40 \times \sqrt{?} \simeq 32^{2}+16^{2}$
$\Rightarrow \sqrt{?} \simeq \frac{1}{8} \times(1024+256)$
$\Rightarrow \sqrt{?} \simeq \frac{1}{8} \times 1280 \simeq 160$
\Rightarrow ? $=(160)^{2}=25600$

S9. Ans.(b)
Sol.
$?+13.02 \times 49.98=420.05+\frac{44.98}{100} \times 799+220.10$
$\Rightarrow ?+13 \times 50 \simeq 420+\frac{45}{100} \times 800+220$
$\Rightarrow ?+650 \simeq 420+360+220$
\Rightarrow ? $=1000-650=350$

S10. Ans.(e)
Sol.
$(?)^{\frac{3}{2}}=255.98 \times(2)^{7.99} \div(8)^{4.99} \times 32.01$
$\Rightarrow(?)^{\frac{3}{2}} \simeq 256 \times(2)^{8} \div(8)^{5} \times 32$
$\Rightarrow(?)^{\frac{3}{2}} \simeq \frac{2^{8} \times 2^{8}}{2^{15}} \times 2^{5}$
$\Rightarrow(?)^{\frac{3}{2}}=(2)^{6}=64$
\Rightarrow ? $=(64)^{\frac{2}{3}}=16$

S11. Ans.(e)
Sol.
$3028+672-40 \%$ of $?+(10)^{3}=(60)^{2}-\sqrt{10000}$
$3700+1000+100-3600=\frac{40 \times ?}{100}$
$?=3000$

S12. Ans.(b)
Sol.
$\frac{127.5+?}{8}+25 \times 40-\sqrt{256}=(32)^{2}$
$\frac{127.5+?}{8}+1000-16=1024$
$127.5+?=40 \times 8$
? $=320-127.5$
? $=192.5$

S13. Ans.(c)
Sol.

$$
\begin{aligned}
& \sqrt{1225}+\sqrt{2025}+\sqrt{3025}-\sqrt{100}=(?)^{3} \\
& 35+45+55-10=(?)^{3} \\
& (?)^{3}=125 \\
& ?=5
\end{aligned}
$$

S14. Ans. (c)
Sol. $560+70=630$

S15. Ans.(a)
Sol.
$35 \times 40+\sqrt{961}-\sqrt{(29)^{2}}--50 \%$ of $?=(23)^{2}$
$1400+31-29-\frac{?}{2}=529$
$1402-529=\frac{?}{2}$
? $=873 \times 2$
? $=1746$

Quiz - 6

S1. Ans.(e)
Sol.
Required average $=\frac{\frac{1}{3}(40+70+55) \times 1000}{\frac{1}{2}(42+28) \times 1000}=11: 7$
S2. Ans.(a)
Sol.
Average production of butterscotch drinks in 2014 and $2018=\frac{40+52}{2}=46$ thousand
Average production of chocolate drinks in 2015 and $2018=\frac{60+28}{2}=44$ thousand
Required difference $=46$ thousand -44 thousand $=2$ thousand
S3. Ans.(c)
Sol.
Total production of butterscotch drinks in 2016 and 2018 together $=55+52=107$ thousand
Production of chocolate drinks in 2014 and 2017 together $=50+75=125$ thousand
Required less percent $=\frac{125-107}{125} \times 100$
$=\frac{18}{125} \times 100=14 \frac{2}{5} \%$
S4. Ans.(b)
Sol.
Average production of butterscotch drinks over last five years $=\frac{40+70+55+33+52}{5}$
$=\frac{250}{5}=50$
Required percent $=\frac{70-50}{50} \times 100=40 \%$
S5. Ans.(a)
Sol.
In 2015, 2016 and 2018 the production of butterscotch was more than the production of chocolate drink.
Then,
percent production of butterscotch drinks as compared to chocolate drinks -
In 2015
$=\frac{70-60}{60} \times 100=16.67 \%$
In 2016,
$=\frac{55-42}{42} \times 100=\frac{13 \times 100}{42}=30.95 \%$

In 2018,
$=\frac{52-28}{28} \times 100=85.71 \%$
So, production was maximum in year 2018.

S6. Ans.(b)
Sol. Required average $=\frac{(190+172)+(162+164)}{2}$
$=344$

S7. Ans.(a)
Sol. Required ratio $=\frac{160+190}{178+172}$
$=\frac{350}{350}$
= $1: 1$

S8. Ans.(d)
Sol. Required $\%=\frac{\{(168+172)-160\}}{160} \times 100$
$=112.5 \%$

S9. Ans.(b)
Sol. Required difference $=(158+190+162)-(168+172+164)$
= 510-504
$=6$

S10. Ans.(c)
Sol. Required total number of pens $=168+178+172+164=682$

S11. Ans(b)
Sol.
Total lectures taken by male lecturers in Friday $=450-250=200$
Total lectures taken by male lecturers in Tuesday $=350-200=150$
Required percentage $=\frac{200-150}{150} \times 100$
$=\frac{50}{150} \times 100=33 \frac{1}{3} \%$
S12. Ans(d)
Sol.
Total lectures taken by female lecturers in Wednesday $=100$
Total lectures taken by male lecturers in Monday $=400-150=250$
Required ratio $=100: 250=2: 5$

S13. Ans(e)
Sol.
Total lectures taken by male lecturers having age below 50 years in Thursday $=(250-50) \times \frac{60}{100}=120$
Required difference $=120-50=70$

S14. Ans(a)
Sol.
Total lectures taken by male lecturers in Monday $=400-150=250$
Total lectures taken by male lecturers in Tuesday $=350-200=150$
Total lectures taken by male lecturers in Friday $=450-250=200$
Required average $=\frac{250+150+200}{3}=200$
S15. Ans(c)
Sol.
Total lectures taken by male lecturers in Wednesday $=300-100=200$
Total lectures taken by male lecturers in Monday $=400-150=250$
Required percentage $=\frac{200}{250} \times 100=80 \%$

$$
\text { Quiz - } 7
$$

S1. Ans.(b)
Sol.

S2. Ans.(d)
Sol.

S3. Ans.(d)
Sol.

S4. Ans.(a)
Sol.

S5. Ans.(b)
Sol.

S6. Ans (b)
Sol

S7. Ans (d)
Sol.

S8. Ans (a)
Sol.

S9. Ans (c)
Sol.

S10.Ans (b)
Sol.

S11. Ans(d)
Sol.
Pattern of series -
$26+13=39$
$39+11=50$
$50+13=63$

S12. Ans(b)
Sol.

TEST SERIES

Bilingual

SBICLERK 2021 PRIME

Pattern of series -
$\times 0.5+1, \times 1+1, \times 2+1, \times 4+1, \times 8+1$
So, $?=12 \times 0.5+1=7$

S13. Ans(a)
Sol.
Pattern of series -
$24+\left(5^{2}-1\right)=48$
$48+\left(7^{2}-1\right)=96$
$96+(92-1)=176$
$176+\left(11^{2}-1\right)=296$
? $=296+\left(13^{2}-1\right)=464$
S14. Ans(b)
Sol.
Pattern of series -
$63=\left(4^{3}-1\right)$
$215=\left(6^{3}-1\right)$
$511=\left(8^{3}-1\right)$
$?=\left(10^{3}-1\right)=999$
$1727=\left(12^{3}-1\right)$
$2743=\left(14^{3}-1\right)$
S15. Ans(e)
Sol.
Pattern of series -
$16 \times 5+5=85$
$85 \times 4+4=344$
$344 \times 3+3=1035$
$1035 \times 2+2=2072$
$2072 \times 1+1=2073$

Quiz-8

Sol (1-5):
Let the total employees in A, B \& C be $x, y \& z$ respectively
$y+z=720$
$x+z=610$
$x+y=650$
On adding (i), (ii) \& (iii)
$x+y+z=990$
from (i) \& (iv)
$x=270$
from (ii) \& (iv)
$y=380$
from (iii) \& (iv)
$\mathrm{z}=340$
male in $\mathrm{A}=\frac{270 \times 5}{9}=150$
female in $A=270 \times \frac{4}{9}=120$
male in $\mathrm{B}=\frac{380 \times 9}{19}=180$
female in $B=\frac{380 \times 10}{19}=200$
male in $C=\frac{180}{9} \times 8=160$
female in $C=340-160=180$

Companies	Male	Female	Total
A	150	120	270
B	180	200	380
C	160	180	340

S1. Ans.(c)
Sol. required difference $=(160+180)-(150+180)$
$=10$

S2. Ans.(a)
Sol. required $\%=\frac{(120+180)-(150+120)}{(120+180)} \times 100$
$=10 \%$

S3. Ans.(e)
Sol. required $\%=\frac{\left(\frac{180+200}{2}\right)}{160} \times 100=\frac{190}{160} \times 100$
= 118.75\%

S4. Ans.(d)
Sol. required ratio $=\frac{(180+160)}{(120+200)}=\frac{340}{320}=17: 16$

S5. Ans.(b)
Sol. total employees in A who have done their masters $=150 \times 0.6+120 \times 0.8=186$
required $\%=\frac{186}{270} \times 100=68 \frac{8}{9} \%$

Sol (6-10):

Let the population of Hindu to that of Muslim be $3 x \& 2 x$ respectively.
Total number of male in Muslim $=\frac{2400}{3} \times 5=4000$.
Total population of Muslim $=6400$.
Total population of Hindu $=9600$.
Total population of Gurgaon $=16000$.
In Hindu, number of female $=4800$.
\& number of male $=4800$.
In Gurgaon, number of female $=\frac{16000}{20} \times 9=7200$
In Gurgaon, number of male $=\frac{16000}{20} \times 11=8800$.

	Hindu	Muslims
Male	4800	4000
Female	4800	2400

S6. Ans.(b)
Sol. required $\%=\frac{4800}{16000} \times 100=30 \%$
S7. Ans.(a)
Sol. required difference $=(4800+4000)-(4800+2400)=1600$.
S8. Ans.(d)
Sol. Total population in Gurgaon which are eligible to cast the votes $=11200$.
Hindu population which are eligible to cast the votes $=5760$
Muslims population which are eligible to cast the votes $=11200-5760=5440$.

S9. Ans.(c)
Sol. Required $\%=\frac{2400}{9600} \times 100=25 \%$
S10. Ans.(b)
Sol. Total population having domicile $=0.8 \times 16000=12800$.
Muslim population having domicile $=\frac{12800}{32} \times 15=6000$
Hindu population having domicile $=12800-6000=6800$.
Required difference $=\{(9600-6800)-(6400-6000)\}$
$=2800-400=2400$.

S11. Ans. (c)
Sol. Number of Activa in A \& B together in $2019=\left(6000 \times \frac{100-50}{100}\right)+\left(4000 \times \frac{100-25}{100}\right)$
$=3000+3000$
$=6000$
Number of Activa in D \& E together in $2018=\left(8000 \times \frac{100-25}{100}\right)+\left(5000 \times \frac{100-20}{100}\right)$
$=6000+4000$
$=10000$
Required $\%=\frac{6000}{10000} \times 100$
= 60\%

S12. Ans. (b)
Sol. Average number of aviators in C, D \& E in $2018=\frac{1}{3} \times\left(\left(6000 \times \frac{30}{100}\right)+\left(8000 \times \frac{25}{100}\right)+\right.$ $\left.\left(5000 \times \frac{20}{100}\right)\right)$
$=\frac{1}{3} \times(1800+2000+1000)$
$=1600$
Average number of aviators in A \& D in $2019=\frac{1}{2} \times\left(\left(6000 \times \frac{50}{100}\right)+\left(10000 \times \frac{20}{100}\right)\right)$
$=\frac{1}{2} \times(3000+2000)$
$=2500$
Required difference $=2500-1600$
$=900$

S13. Ans. (e)
Sol. Number of Activa in A, B \& C together in $2018=\left(\left(3000 \times \frac{100-40}{100}\right)+\left(2000 \times \frac{100-50}{100}\right)+\right.$ $\left.\left(6000 \times \frac{100-30}{100}\right)\right)$
$=1800+1000+4200$
$=7000$
S14. Ans. (d)
Sol. Number of Avaitor in C \& E together in $2019=\left(\left(9000 \times \frac{40}{100}\right)+\left(8000 \times \frac{60}{100}\right)\right)$
$=3600+4800$
$=8400$
Number of Activa in D \& E together in $2019=\left(\left(10000 \times \frac{100-20}{100}\right)+\left(8000 \times \frac{100-60}{100}\right)\right)$
$=8000+3200$
$=11200$
Required \% $=\frac{11200-8400}{11200} \times 100$
= 25%

S15. Ans. (a)
Sol. Required number of Avaitor $=\left(3000 \times \frac{40}{100}\right)+\left(2000 \times \frac{50}{100}\right)$
$=1200+1000$
$=2200$

Quiz-9

S1. Ans(a)
Sol.
Wrong number $=506$
Pattern of series -

So, there should be 508 in the place of 506 .
S2. Ans(e)
Sol.
Wrong number $=158$
Pattern of series -

So, there should be 148 in the place of 158

S3. Ans(d)
Sol.
Wrong number $=2400$
Pattern of series -

So, there should be 2880 in the place of 2400 .
S4. Ans(b)
Sol.
Wrong number $=58$
Pattern of series -

So, there should be 60 in the place of 58 .

S5. Ans.(b)
Sol.

So, there should be 60 in the place of 64
S6. Ans(a)
Sol.
Wrong number = 104
Pattern of series -
$12+27=39$
$39+24=63$
$63+27=90$
$90+24=114$
$114+27=141$
$141+24=165$
So, 114 should come in the place of 104

S7. Ans(d)
Sol.
Wrong number $=562$
$13+3^{3}=40$
$40+4^{2}=56$
$56+5^{3}=181$
$181+6^{2}=217$
$217+7^{3}=560$
$560+8^{2}=624$
So, 560 should come in the place of 562 .

S8. Ans(c)
Sol.
Wrong number $=134$
Pattern of series -
$112+16=128$
$128-20=108$
$108+24=132$
$132-28=104$
$104+32=136$
$136-36=100$
So, should be 136 come in the place of 134 .

S9. Ans(d)
Sol.
Wrong number $=255$
Pattern of series -

$4 \frac{\text { addar27 }}{\text { anuucrans }}$

50+

BANK PO|CLERK
2016-2021 PREVIOUS YEARS'

Memory Based Papers

Useful for SBI, IBPS, RRB, RBI \& Other Bank Exams

- SBI PO | Clerk - 16 Sets
- IBPS PO | Clerk - 18 Sets
- IBPS RRB PO | Clerk - 18 Sets
- RBI Grade B | Assistant - 9 Sets

500+

Exclusive
BANKING \& STATIC Awareness Questions

6500+

Ouestions
$120=11^{2}-1$
$145=12^{2}+1$
$168=13^{2}-1$
$197=14^{2}+1$
$224=15^{2}-1$
$16^{2}+1=257$
$288=17^{2}-1$
So, should be 257 come in the place of 255 .
S10. Ans(d)
Sol.
Wrong number $=920$
Pattern of series -
$5 \times 1+1=6$
$6 \times 2+2=14$
$14 \times 3+3=45$
$45 \times 4+4=184$
$184 \times 5+5=925$
$925 \times 6+6=5556$
So, 925 should come in the place of 920 .

S11. Ans(a)
Wrong number $=92$
Pattern of series -

So, 90 should come in the place of 92 .

S12. Ans(b)
Sol.
Wrong number $=144$
Pattern of series -
$17+15=32$
$32+20=52$
$52+25=77$
$77+30=107$
$107+35=142$
$142+40=182$
So, 142 should come in the place of 144

S13. Ans(d)
Sol.
Wrong number $=35$
Pattern of series -
$210 \div 7=30$
$30 \times 6=180$
$180 \div 5=36$
$36 \times 4=144$
$144 \div 3=48$
$48 \times 2=96$
So, 30 should come in the place of 35 .
S14. Ans(b)
Sol.
Wrong number $=11116$
Pattern of series -
$12 \times 1+2=14$
$14 \times 2+2=30$
$30 \times 3+2=92$
$92 \times 4+2=370$
$370 \times 5+2=1852$
$1852 \times 6+2=11114$
So, 11114 should come in the place of 11116
S15. Ans(b)
Wrong number $=741$
Pattern of series -
$5+(15)^{2}=230$
$230+(14)^{2}=426$
$426+(13)^{2}=595$
$595+(12)^{2}=739$
$739+(11)^{2}=860$
$860+(10)^{2}=960$
So, 739 should come in the place of 741 .

Quiz - 10

S1. Ans.(b)
Sol.
$\frac{65 \times 360}{100}-\frac{?}{100} \times 250 \approx 139$
$\Rightarrow 234-\frac{25 \times ?}{10}=139$
\Rightarrow ? $=\frac{95 \times 10}{25}=38$

S2. Ans.(a)
Sol.
$\sqrt{912 \div 24+184-53} \approx$?
$\Rightarrow ?=\sqrt{169}=13$

S3. Ans.(c)
Sol.
$(15)^{2}-(5)^{3}+\sqrt{1521}+9 \times 13 \approx(?)^{2}$
$\Rightarrow 225-125+39+117=(?)^{2}$
\Rightarrow ? $=\sqrt{256}=16$

S4. Ans.(e)
Sol.
(3750-?) $\div 55 \approx 23$
\Rightarrow ? $=3750-55 \times 23$
? $=2485$

S5. Ans.(d)
Sol.
$(3416 \div 56)-(1134 \div ?) \approx 19$
$\Rightarrow 61-\frac{1134}{?}=19$
$\Rightarrow 42=\frac{1134}{?}$
\Rightarrow ? $=27$
S6. Ans.(c)
Sol.
Required average $=\frac{350 \times \frac{3}{7}+400 \times \frac{9}{20}+200 \times \frac{12}{25}}{3}=\frac{150+180+96}{3}$
$=142$

S7. Ans.(a)
Sol. Total number of Hollywood movies watched by student
$\mathrm{E}=375 \times \frac{16}{25}=240$
Required percentage $=\frac{(400-240)}{400} \times 100=\frac{160}{400} \times 100=40 \%$

S8. Ans.(d)

Sol. Total number of Hollywood movies watched by students C and B together $=250 \times \frac{3}{10}+400 \times \frac{11}{20}$ $=75+220=295$
Total number of Bollywood movies watched by students D and E together $=\frac{200 \times 12}{25}+\frac{375 \times 9}{25}$
$=96+135=231$
Required difference $=295-231=64$

S9. Ans.(b)
Sol. Required ratio $=\frac{250+200}{\frac{400 \times 9}{20}+\frac{250 \times 7}{10}+\frac{375 \times 9}{25}}=\frac{450}{490}$
$=45: 49$

S10. Ans.(e)
Sol. Required percentage $=\frac{(400+200)}{(350+250)} \times 100=100 \%$

S11. Ans.(d)
Sol.
Let increase per year is $x \%$
So,
$35000 \times \frac{(100+x)}{100} \times \frac{(100+x)}{100}=55566$
$x=26 \%$

S12. Ans.(c)
Sol.
$1^{\text {st }}$ C.P. $\rightarrow 12000$ Rs.
$1^{\text {st }}$ S.P. $\rightarrow \frac{12000 \times 80}{100}=9600$ Rs.
Now,
$2^{\text {nd }}$ C.P. $\rightarrow 9600$ Rs.
$2^{\text {nd }}$ S.P. $\rightarrow \frac{9600 \times 130}{100}=12480$ Rs.
Profit $\Rightarrow 480$ Rs.

S13. Ans.(a)
Sol.
Let sum $=P$
Now,
$\frac{P \times 7 \times 7}{100}=1519$
$\mathrm{P}=\frac{1519 \times 7 \times 7}{100}$
$\mathrm{P}=3100$ Rs.

S14. Ans.(e)
Sol. Let amount $=30 x$
So,
X, Y and Z was to get $\Rightarrow 5 x, 10 x, 15 x$ respectively But
X, Y and Z actually get $\Rightarrow 10 x, 8 x, 12 x$ respectively
$X \operatorname{got} \Rightarrow 10 x-5 x=305 \Rightarrow x=61$
So Z get $\Rightarrow 61 \times 12=732$ Rs.
S15. Ans.(b)
Sol. Let age of Mahendra $=x$
So age of Niraj $=x+12$
Present age of Bhavya $=\frac{(x+12-3)}{3}$
$=\frac{x+9}{3}$
Now,
$\frac{x}{\frac{x+9}{3}}=\frac{2}{1}$
$x=18$
Niraj's age $\Rightarrow 18+12=30$

Quiz - 11

S1. Ans.(e)
Sol. I. $x^{2}+9 x-22=0$
$\Rightarrow \mathrm{x}^{2}+11 \mathrm{x}-2 \mathrm{x}-22=0$
$\Rightarrow(x+11)(x-2)=0$
$\Rightarrow x=-11,2$
II. $2 y^{2}-7 y+6=0$
$\Rightarrow 2 y^{2}-4 y-3 y+6=0$
$\Rightarrow 2 y(y-2)-3(y-2)=0$
$\Rightarrow(\mathrm{y}-2)(2 \mathrm{y}-3)=0$
$\Rightarrow \mathrm{y}=2, \frac{3}{2}$
No relation

S2. Ans.(e)
Sol. I. $2 y^{2}-13 y-34=0$
$\Rightarrow 2 y^{2}-17 y+4 y-34=0$
$\Rightarrow \mathrm{y}(2 \mathrm{y}-17)+2(2 \mathrm{y}-17)=0$
$\Rightarrow(2 y-17)(y+2)=0$
$\Rightarrow y=\frac{17}{2},-2$
II. $3 x^{2}-11 x-20=0$
$\Rightarrow 3 x^{2}-15 x+4 x-20=0$
$\Rightarrow 3 x(x-5)+4(x-5)=0$
$\Rightarrow(x-5)(3 x+4)=0$
$\Rightarrow x=5, \frac{-4}{3}$
No relation

S3. Ans.(b)
Sol. I. $x^{4}=256$
$\Rightarrow \mathrm{x}= \pm 4$
II. $y^{2}-16 y+64=0$
$\Rightarrow(y-8)^{2}=0$
$\Rightarrow y=8$
$y>x$
S4. Ans.(e)
Sol.
I. $x^{2}+4 x-12=0$
$x^{2}+6 x-2 x-12=0$
$x=-6,2$
II. $2 \mathrm{y}^{2}+7 \mathrm{y}+6=0$
$2 y^{2}+4 y+3 y+6=0$
$2 y(y+2)+3(y+2)=0$
$y=-2, \frac{-3}{2}$
\therefore No relation

S5. Ans.(b)
Sol. I. $2 x+3 y=4$
II. $4 x+5 y=6$

Solving eq. (I) and (II),
$(2 x+3 y=4) \times 2$
$4 x+5 y=6$
$y=2$
Put $y=2$ in eq. (I),
$2 x+6=4$
$\Rightarrow x=-1$
$y>x$
S6. Ans(d)
Sol.
I. $x= \pm 4$
II. $y=+4$

So, $x \leq y$
S7. Ans(d)
Sol.
I. $x^{2}+23 x+132=0$
$x^{2}+12 x+11 x+132$
$x(x+12)+11(x+12)$
$(x+12)(x+11)$
$x=-11,-12$
II. $y^{2}+11 y+6 y+66=0$
$y(y+11)+6(y+11)=0$
$(y+11)(y+6)=0$
$y=-11,-6$
So, $x \leq y$
S8. Ans(d)
Sol.
I. $x^{2}-7 x-6 x+42=0$
$x(x-7)-6(x-7)=0$
$(x-6)(x-7)=0$
$x=6,7$
II. $\mathrm{y}^{2}-8 y-7 y+56=0$
$\mathrm{y}(\mathrm{y}-8)-7(y-8)=0$
$(y-8)(y-7)=0$
$y=8,7$
So, $x \leq y$

S9. Ans(e)
Sol.
I. $x= \pm 11$
II. $y^{2}+13 y-11 y-143=0$
$y(y+13)-11(y+13)=0$
$(y+13)(y-11)$
$y=-13,11$
So, no relation can be established between x and y.

S10. Ans(d)
Sol.
I. $x^{2}-12 x-8 x+96=0$
$\mathrm{x}(\mathrm{x}-12)-8(x-12)=0$
$(x-8)(x-12)=0$
$\mathrm{x}=8,12$
II. $\mathrm{y}^{2}-16 y-12 y+192=0$
$\mathrm{y}(\mathrm{y}-16)-12(y-16)=0$
$(y-12)(y-16)=0$
$y=12,16$
$x \leq y$
S11. Ans.(c)
Sol.
I. $x^{2}+12 x+35=0$
$x^{2}+7 x+5 x+35=0$
$(x+7)(x+5)=0$
$\therefore x=-5$ or -7
II. $y^{2}+9 y+20=0$
$\mathrm{y}^{2}+5 \mathrm{y}+4 \mathrm{y}+20=0$
$(y+5)(y+4)=0$
$y=-5,-4$
$\Rightarrow x \leq y$

S12. Ans.(d)
Sol.
I. $x^{2}-15 x+54=0$
$x^{2}-9 x-6 x+54=0$
$(x-9)(x-6)=0$
$\therefore \mathrm{x}=9$ or 6
II. $y^{2}-23 y+132=0$
$y^{2}-11 y-12 y+132=0$
$(y-11)(y-12)=0$
$y=11$ or 12
$\therefore x<y$

S13. Ans.(e)
Sol.
I. $6 x^{2}+5 x+1=0$
$6 x^{2}+3 x+2 x+1=0$
$3 x(2 x+1)+1(2 x+1)=0$
$x=-\frac{1}{2}$ or $-\frac{1}{3}$
II. $15 y^{2}+11 y+2=0$
$15 y^{2}+6 y+5 y+2=0$
$3 y(5 y+2)+1(5 y+2)=0$
$\therefore \mathrm{y}=-\frac{2}{5}$ or $-\frac{1}{3}$
\therefore no relation can be established

S14. Ans.(e)
Sol.
I. $x^{2}-3 x-28=0$
$x^{2}-7 x+4 x-28=0$
$\mathrm{x}(\mathrm{x}-7)+4(\mathrm{x}-7)=0$
$\therefore x=7$ or -4
II. $\mathrm{y}^{2}-\mathrm{y}-12=0$
$\mathrm{y}^{2}+3 \mathrm{y}-4 \mathrm{y}-12=0$
$y(y+3)-4(y+3)=0$
$\therefore y=-3$ or 4
\therefore no relation can be established

S15. Ans.(b)
Sol.
I. $x^{2}-2 x-3=0$
$x^{2}-3 x+x-3=0$
$\mathrm{x}(\mathrm{x}-3)+1(\mathrm{x}-3)=0$
$\therefore x=3$ or -1
II. $\mathrm{y}^{2}+5 \mathrm{y}+6=0$
$y^{2}+3 y+2 y+6=0$
$(y+2)(y+3)=0$
$\therefore y=-2$ or -3
$\therefore \mathrm{x}>\mathrm{y}$

Quiz - 12

S1. Ans.(d)
Sol.
80% of $350+45 \%$ of $800=? \times 256$
$280+360=? \times 256$
$?=\frac{640}{256}=2.5$

S2. Ans.(e)
Sol.
115% of $360+180 \%$ of $270=? \times 225$
$414+486=? \times 225$
$?=\frac{900}{225}=4$
S3. Ans.(b)
Sol.
$9^{?} \times 729=\frac{3^{4} \times 9^{6}}{81}$
$9^{?}=\frac{9^{2} \times 9^{6}}{9^{2} \times 9^{3}}=9^{3}$
\Rightarrow ? $=3$

S4. Ans.(d)
Sol.
$5 \frac{1}{4}+7 \frac{1}{3}+4 \frac{1}{2}=3 \frac{1}{6}+?+5 \frac{1}{6}$
$(5+7+4)+\left(\frac{1}{4}+\frac{1}{3}+\frac{1}{2}\right)-3-5-\frac{1}{6}-\frac{1}{6}=$?
$8+\frac{1}{4}+\frac{1}{2}+\frac{1}{3}-\frac{1}{3}=$?
$?=8+\frac{2+4}{8}=8 \frac{3}{4}$

S5. Ans.(a)
Sol. Wrong no. is 1020 .
$3 \times 1+2=5$
$5 \times 2+4=14$
$14 \times 3+6=48$
$48 \times 4+8=200$
$200 \times 5+10=1010$
$1010 \times 6+12=6072$
So, there should be 1010 instead of 1020 .

S6. Ans.(b)
Sol. Wrong no. is 590
$48 \times 2-12=84$
$84 \times 2-12=156$
$156 \times 2-12=300$
$300 \times 2-12=588$
$588 \times 2-12=1164$
$1164 \times 2-12=2316$
So, there should be 588 instead of 590 .

S7. Ans.(e)
Sol. Wrong no. is 12

So, there should be 10 instead of 12 .

S8. Ans(c)
Sol.
$\begin{array}{lllllll}2 & 6 & 12 & 20 & 30 & 42 & 56\end{array}$
$\uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow$
$1^{2}+12^{2}+23^{2}+34^{2}+45^{2}+56^{2}+67^{2}+7$
Wrong number is 24 .
S9. Ans.(c)
Sol.
Pattern of series

S10. Ans.(d)
Sol.
Pattern of series

S11. Ans.(a)
Sol.
Pattern of series

S12. Ans.(d)
Sol.
Pattern of series

S13. Ans.(b)
Sol. $\therefore 3599 \div 20+110 \times 24.9+418=$?
$3600 \div 20+110 \times 25+418=$?
$? \cong 180+2750+418$
? $=3348$
? $\cong 3350$

S14. Ans.(c)
Sol. $25 \times 12.9+\sqrt{399}+1145=$?
$25 \times 13+\sqrt{400}+1145=$?
? $=325+20+1145$
? $=345+1145$
? $\cong 1490$

S15. Ans.(b)
Sol. $3453.9+6119.8+1729.9=$?
? $=3454+6120+1730$
? $=11304$
? $\cong 11310$

S16. Ans.(e)
Sol. $140 \times 12.9-442 \div 22+979=$?
$140 \times 13-440 \div 22+979=$?
? $=1820-20+979$
$?=1800+979$
?= 2779
? $\cong 2780$

S17. Ans.(b)
Sol. (I) $x^{2}-14 x+48=0$
$\therefore x^{2}-8 x-6 x+48=0$
$x(x-8)-6(x-8)=0$
$(x-8)(x-6)=0$
$\therefore \mathrm{x}=8,6$
(II) $y^{2}-18 y+80=0$
$\therefore \mathrm{y}^{2}-8 \mathrm{y}-10 \mathrm{y}+80=0$
$\therefore y(y-8)-10(y-8)=0$
$\therefore(y-8)(y-10)=0$
$\therefore y=8,10$
$\therefore \mathrm{x} \leq \mathrm{y}$
S18. Ans.(c)
Sol. (I) $x^{3}+328=2525$
$\therefore x^{3}=2525-328$
$\therefore x^{3}=2197$
$\therefore \mathrm{x}=13$
(II) $\mathrm{y}^{3}+349=1680$
$\therefore \mathrm{y}^{3}=1680-349$
$\therefore \mathrm{y}^{3}=1331$
$\therefore \mathrm{y}=11$
$\therefore \mathrm{x}>\mathrm{y}$
S19. Ans.(e)
Sol. (I) $x^{2}-19 x+88=0$
$\therefore x^{2}-8 x-11 x+88=0$
$\therefore x(x-8)-11(x-8)=0$
$\therefore(\mathrm{x}-8)(\mathrm{x}-11)=0$
$\therefore \mathrm{x}=8,11$
(II) $\mathrm{y}^{2}-21 \mathrm{y}+108=0$
$\therefore y^{2}-9 y-12 y+108=0$
$\therefore y(y-9)-12(y-9)=0$
$\therefore(\mathrm{y}-12)(\mathrm{y}-9)=0$
$\therefore \mathrm{y}=9,12$
So, no relation

S20. Ans.(d)
Sol. (I) $x^{3}=1728$
$\therefore \mathrm{x}=\sqrt[3]{1728}$
$\therefore \mathrm{x}=12$
(II) $\mathrm{y}^{2}=144$
$\therefore \mathrm{y}=\sqrt{144}$
$y= \pm 12$
$\therefore \mathrm{x} \geq \mathrm{y}$

Quiz - 13

S1. Ans.(c)
Sol. Let odd numbers are $\mathrm{x}-4, \mathrm{x}-2, \mathrm{x}, \mathrm{x}+2, \mathrm{x}+4$
$\therefore \frac{x-4+x-2+x+x+2+x+4}{5}=33$
$\Rightarrow \mathrm{x}=33$
\therefore least odd number $=33-4=29$
S2. Ans.(c)
Sol.

ATQ, $5 \rightarrow 50$.
$1 \rightarrow 10$.
$2 \rightarrow 20$
Number of Girls $=20$.
S3. Ans.(e)
Sol. Total present age of five employee
$=54 \times 5+3 \times 5=270+15=285$ years
Total present age of all six employee $=52 \times 6=312$
Age of new employee $=312-285=27$ years
S4. Ans.(b)
Sol.
Let four numbers $\rightarrow a, b, c, d$
Let initially it replaced ' a '
$=\frac{\mathrm{x}+\mathrm{b}+\mathrm{c}+\mathrm{d}}{4}=\frac{\mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{d}}{4}+1 \ldots$
Let then it replaced ' b '
$=\frac{\mathrm{x}+\mathrm{a}+\mathrm{c}+\mathrm{d}}{4}+1=\frac{\mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{d}}{4}$.
Solving (i) and (ii)
$\mathrm{b}-\mathrm{a}=8$

S5. Ans.(d)
Sol.
Total present age of father and son $=(36+3) \times 2=78$ years
Let present age of son be x years.
The, present age of father $=(78-x)$ years.
Present age of mother $=(2 x-3)$ years.
ATQ,
$\frac{(2 x-3)+3}{78-x-4}=\frac{24}{25}$
$\Rightarrow 50 \mathrm{x}=74 \times 24-24 \mathrm{x}$
$\Rightarrow \mathrm{x}=24$
Required average $=\frac{24+45+54}{3}=41$ years.

S6. Ans.(e)
Sol.
$\frac{40}{100} \times(X+2000)=1300 \Rightarrow X=1250$
$\frac{60}{1200} \times(1250+Y)=1830 \Rightarrow Y=1800$
$X: Y=1250: 1800=25: 36$

S7. Ans.(e)
Sol.
$40 \times P=75 \times Q$
$\Rightarrow 8 \mathrm{P}=15 \mathrm{Q}$
Required percent $=\frac{15 \times 1.5 Q}{20 Q} \times 100=112 \frac{1}{2} \%$

S8. Ans.(d)
Sol.
Using the formula,
$\%$ reduction in consumption
$=\frac{25}{(100+25)} \times 100$
= 20%

S9. Ans.(d)
Sol.
Let fraction is $\frac{x}{y}$
So ATQ
$\frac{x}{y} \times \frac{120}{100}=\frac{6 x}{5 y}$
$\Rightarrow \frac{6 x(100+240)}{5 y(150)}=\frac{6}{5}$
$\frac{x}{y}=\frac{15}{34}$

S10. Ans.(b)
Sol.
$\frac{20}{100}(X+2500)=\frac{40}{100}(X+900)$
$0.2 X+500=0.4 X+360$
$0.2 X=140$
X $=700$
50% of $X=\frac{1}{2} \times 700=350$

S11. Ans.(d)
Sol.
Let no. of balls in bag x and y is $2 a$ and $3 a$ respectively
\Rightarrow Now 5 balls pare taken out of bag y and put in bag x
$\therefore \frac{2 a+5}{3 a-5}=\frac{1}{1}$
$\Rightarrow 2 a+5=3 a-5$
$a=10$
\therefore No. of balls in each bag is
$x \Rightarrow 2 \times 10+5=25$
$y \Rightarrow 3 \times 10-5=25$

S12. Ans.(a)
Sol. Let earning of A \& B be $2 x$ and x respectively then
ATQ,
$\frac{2 x-5 y}{x-3 y}=\frac{4}{1}$
$\Rightarrow 2 \mathrm{x}-5 \mathrm{y}=4 \mathrm{x}-12 \mathrm{y}$
$\Rightarrow 2 \mathrm{x}=7 \mathrm{y}$
$\Rightarrow \mathrm{x}=7 / 2 \mathrm{y}$ \qquad
again, $(2 x-5 y)+(x-3 y)=5,000$
$\Rightarrow 3 x-8 y=5,000$
using eq (i), we get
$y=2,000$
then $x=7,000$
So, required income of $B=$ Rs 7,000

S13. Ans (c)
Sol. Let two numbers are $5 x$ and $7 x$ respectively.
ATQ
$\frac{5 x+30}{7 x+30}=\frac{3}{4}$
$20 x+120=21 x+90$
$x=30$
So, two numbers are 150 and 210 respectively.
Now, required ratio $=\frac{150-10}{210-10}=\frac{140}{200}=\frac{7}{10}$

S14. Ans.(e)
Sol. Let number A and B are 11x and 19x respectively
ATQ,
$\frac{11 x+19}{19 x+11}=\frac{2}{3}$
$33 x+57=38 x+22$
$5 x=35$
$\mathrm{x}=7$
Required answer $=B+20$
$=19 \times 7+20=153$

S15. Ans.(d)
Sol.

NRA-CET Ready

BANK
MAHA PACK
Live Class, Video Course, Test Series, eBooks
Bilingual (with eBooks) 12 Months Validity

Let income of A and B be Rs $5 x$ and Rs $9 x$ respectively
Expenditure of $A=\operatorname{Rs} \frac{15}{8} x$
Saving of $\mathrm{A}=\operatorname{Rs} \frac{25}{8} x$
Expenditure of $B=\operatorname{Rs} 4 x$
Saving of $B=$ Rs $5 x$
ATQ
$\frac{65}{8} x=1950$
$\mathrm{x}=240$
required difference= Rs 960

Quiz - 14

S1. Ans.(e)
Sol.
Age of Ayush $=\frac{50}{2}+11=36$ years
Age of Abhishek $=\frac{3}{4} \times 36=27$ years.
Required difference $=36-27=9$ years.
S2. Ans.(e)
Sol.
Let 4 consecutive even no. are $x, x+2, x+4 \& x+6$
$\& 3$ consecutive odd no. are $\mathrm{y}-2, \mathrm{y}, \mathrm{y}+2$
ATQ,
$4 x+12-3 y=94$
$4 x-3 y=82 \ldots$ (i)
$\frac{x+6+y-2}{2}=42$
$x+y=84-4$
$x+y=80$
multiplying. (ii) by 3 \& solving with ...(i)
$x=46$
\therefore Second lowest even no. $=48$

S3. Ans.(b)
Sol.
Sum of Present age Ritu \& Priya $=22 \times 2=44$
Let,
Ritu's age $=x$
Priya's age $=44-x$
ATQ,
$\frac{44-x+8}{x+8}=\frac{7}{8}$
$8(52-\mathrm{x})=7 \mathrm{x}+56$
$\Rightarrow x=\frac{360}{15}=24$
Required ratio $=\frac{24-2}{44-24-2}=\frac{22}{18}=\frac{11}{9}$

S4. Ans.(d)
Sol.
Present age of Laxmi $=14+2=16$ years
Sum of age of Kapil and Renu $=11.5 \times 2=23$ years
Present age of Kapil $=16.5 \times 2-6-16$
= 11 years
Age of Renu 10 years hence $=23-11+10=22$ years

S5. Ans.(a)
Sol.
Let present age of son be x years
Present age of father $=(2 x+6) y r$
ATQ
$\frac{(\mathrm{x}+4)+(2 \mathrm{x}+6+4)}{2}=34$
$x=18$
Required ratio $=\frac{18}{42}=3: 7$
S6. Ans (a)
Sol.
Let present age of Lalit and Vikas be 'x years' and 'y years' respectively
ATQ
$x-10=5(y-10)$
$x=5 y-40 \ldots \ldots \ldots \ldots(i)$
And $x+20=2(y+20)$
$x=2 y+20$ \qquad
From (i) and (ii)
$x=60$ and $y=20$
Required ratio $=\frac{20-5}{60-5}=\frac{15}{55}$
$=3: 11$

S7. Ans.(d)
Sol.
Sum of present age of couple $=2 \times 29=58$
Age of family after 8 years
$=58+8 \times 2+(8-2)+(8-4)$
$=58+16+6+4$
$=84$
Required average $=\frac{84}{4}=21$
S8. Ans (a)
Sol. Let the age of Rashmi 16 years hence be 10x years Then, 16 years hence Neha's age $=13 x$ years
Present age of Rashmi $=(10 x-16)$ years
Present age of Neha $=(13 x-16)$ years
ATQ,
$\frac{10 x-16-8}{13 x-16-8}=\frac{4}{7}$
$\Rightarrow 70 \mathrm{x}-168=52 \mathrm{x}-96$
$\Rightarrow 18 \mathrm{x}=72$
$\Rightarrow x=4$
Present age of Rashmi $=24$ years.
Present age of Neha $=36$ years.
Required $\%=\frac{12}{24} \times 100=50 \%$
S9. Ans.(b)
Sol. ATQ,
Let present age of A, B, C, D be $6 x, 8 x, 11 x$ and $15 x$ years respectively.
$(6 x-4)+(8 x-4)+(11 x-4)+(15 x-4)=64$
$40 x=80$
$x=2$
Difference of present age of B and D is
$(15-8) \times 2=14$ years
S10. Ans(e)
Sol.
Let the numerator and denominator of a fraction be x and y respectively
ATQ
$x+4=1.5 y$
And $\frac{x+5}{2 y}=\frac{x}{y}$
$\mathrm{x}=5$
and $y=6$
Original fraction $=\frac{5}{6}$
Required fraction $=\frac{5}{6} \times 2=\frac{5}{3}$

S11. Ans(e)
Sol. Let the two -digit no. be $(10 a+b)$, where a is tens digit and b is unit digit.
ATQ
$(10 a+b)+0.2(10 a+b)=(10 b+a)$
$11 a=8.8 b$
$\left(\frac{a}{b}=\frac{4}{5}\right)$
Since the no. is two- digit number. So the only possible no. is 45 and reverse of it is 54 .
So, 40% of no. $=18$

S12. Ans.(d)
Sol.
Let, S_{1} series be $\rightarrow(x-4),(x-2),(x),(x+2),(x+4)$
Let S_{2} series be $\rightarrow(y-4),(y-2),(y),(y+2),(y+4)$
ATQ,
$x=1.5 y$
And, $x-4+y-4=67$
$\Rightarrow \mathrm{x}+\mathrm{y}=75$
$\Rightarrow 2.5 \mathrm{y}=75$
$\Rightarrow y=30$
largest no. of S_{2} series $=y+4=30+4=34$

S13. Ans(d)
Sol.
Let present age of Chintu be $5 x$ years
Then present age of Binny $=8 x$ years
And present age of Amit=6x years
ATQ
$8 x-5 x-(8 x-6 x)=6$
$x=6$
Required average $=40$ years

S14. Ans. (a)
Sol.
Let age of Ravi and Vicky, 4 years ago was $5 x$ years and $6 x$ years respectively
2 years later, age of Ravi $=(5 x+6)$ years
Age of Rocky, 2 years later $=\left(\frac{6 x+4}{4} \times 5\right)+2$ years
ATQ
$(5 x+6)+\left(\frac{6 x+4}{4} \times 5\right)+2=63$
$\mathrm{x}=4$
required difference $=4$ years

S15. Ans.(b)
Sol.
Let the fraction be $\frac{x}{y}$
ATQ,
$\frac{2.5 \mathrm{x}}{0.75 \mathrm{y}}=\frac{8}{9}$
$\Rightarrow \frac{\mathrm{x}}{\mathrm{y}}=\frac{4}{15}$

Quiz - 15

S1. Ans.(b)
Sol.
Let B's investment $=\mathrm{a}$
And,
Total investment $=28 x$
And total profit $=15 x$
A^{\prime} s investment $=28 \mathrm{x}-\mathrm{a}$
Ratio of profit share between A and $B=(28 x-a)$: a
Let Profit of $A=(28 x-a) b$
Let Profit of $\mathrm{B}=(a b)$
Now,
$28 x b-a b+a b=15 x$
$\Rightarrow 28 x b=15 x$
$\Rightarrow \mathrm{b}=\frac{15}{28}$
B's profit $=\mathrm{ab}=\frac{15}{28} \times \mathrm{a}=5250$
B^{\prime} 's investment $=a=5250 \times \frac{28}{15}=9800$
S2. Ans.(d)
Sol.
Ratio of investment of Anurag and Roshan $=\begin{gathered}(12,000 \times 12) \\ 48\end{gathered}:(14000 \times 6+10500 \times 6)$
So, profit share of Anurag $=\frac{9700}{(48+49)} \times 48=$ Rs. 4800

S3. Ans.(b)
Sol.
Let A increased his sum by x and B decreased his sum by x
ATQ,
$\frac{45000 \times 4+(45000+x) \times 8}{60000 \times 4+(60,000-x) \times 8}=\frac{1}{1}$
$\Rightarrow 45,000+90,000+2 x=60,000+120000-2 x$
$\Rightarrow 4 x=45,000$
$\Rightarrow x=$ Rs. 11,250

S4. Ans.(c)
Sol.
Let x ltr. of water is added.
$\therefore \frac{\frac{3}{7} \times 84}{\frac{4}{7} \times 84+x}=\frac{2}{5}$
$\Rightarrow \frac{36}{48+x}=\frac{2}{5}$
$\Rightarrow 90=48+x$
$\Rightarrow x=42 \mathrm{ltr}$.

S5. Ans.(a)
Sol.
Let initial quantity of milk and water be x and y respectively
Now
$\frac{x}{y}=\frac{3}{2}$
$x=\frac{3}{2} y \ldots$ (i)
Again
$\frac{x+4}{y}=\frac{2}{1}$
$x-2 y+4=0$
Put (i) in (ii)
$\frac{3}{2} y-2 y=-4$
$y=8$
So $x=12$ liter
So total quantity $=12+8=20$ liter
S6. Ans.(d)
Sol.
Percentage of milk in first jar $=64 \%$
Percentage of milk in second jar $=(100-26)=74 \%$
Now using allegation method

Required ratio $=3: 2$
S7. Ans.(e)
Sol.
On selling mixture, retailer earns 150% profit
\Rightarrow If container contains $5 l$ of mixture then quantity of milk is $2 l$.
Let $x l$ of water is added in container

ATQ
$\frac{60}{40+x}=\frac{2}{3}$
$\Rightarrow 180=80+2 x \Rightarrow x=50 l$

S8. Ans.(c)
Sol.
Let initially grapes juice $=4 x$
Alcohol $=5 x$
ATQ,
$\frac{5 x+18}{4 x}=\frac{9}{4}$
$\Rightarrow 4 \mathrm{x}=18$
$\Rightarrow \mathrm{x}=4.5 \mathrm{li}$
\therefore Required answer $=4 \times 4.5=18$ liters
S9. Ans.(c)
Sol.
Let the quantity of water and alcohol in the initial mixture be $8 x$ lit and $5 x$ lit respectively.
ATQ,
$\frac{5 x}{8 x+4}=\frac{5}{9}$
$\Rightarrow 45 \mathrm{x}=40 \mathrm{x}+20$
$\Rightarrow \mathrm{x}=4$
Quantity of initial mixture $=13 x=13 \times 4=52$ lit

S10. Ans.(a)
Sol.
Let the alcohol added be x liter
ATQ,
$\frac{9+\mathrm{x}}{30+\mathrm{x}}=\frac{2}{5}$
Or, $45+5 x=60+2 x$
Or, $3 x=15$
Or, $x=5 \mathrm{ltr}$.

S11. Ans.(d)
Sol.
Rahul invested for 12 months and Karan invested for 10 months.
Let amount invested by Rahul is x.
ATQ,
$\frac{12 \times x}{3500 \times 10}=\frac{9}{7}$
$\mathrm{x}=\frac{9 \times 3500 \times 10}{7 \times 12}$
$=$ Rs. 3750

S12. Ans.(c)

Sol.
Let price of type A wheat be Rs. x per kg and price of type B wheat be Rs. y per kg ATQ,
$12 \times \mathrm{x}+18 \times \mathrm{y}=30 \times 1.2 \mathrm{x}$
$18 y=36 x-12 x$
$18 y=24 x$
$x: y=3: 4$
S13. Ans.(c)
Sol.
Let Y invested for ' x ' months
So
profit ratio
$\mathbf{X} \quad: \quad \mathbf{Y}$
$12 \times 8000: \mathrm{x} \times 5000$
96 : $5 x$
Given that
$\frac{96}{5 \mathrm{x}}=\frac{3000}{4250-3000}$
$\mathrm{x}=8$ months

S14. Ans.(b)
Sol.
Let R's investment $=x$
Q's investment $=x+6000$
P^{\prime} s investment $=x+14000$
ATQ,
$x+x+6000+x+14000=74000$
$x=$ Rs. 18,000
P : Q : R = $32000: 24000: 18000=16: 12: 9$
Q's profit $=\frac{12}{37} \times 44,400=$ Rs. 14,400
S15. Ans.(d)
Sol.
Left milk in container $=75 \times\left(1-\frac{15}{75}\right)^{2}=48$ liters

$$
\text { Quiz - } 16
$$

S1. Ans.(c)
Sol. daily wage of a woman $=\frac{1250}{10 \times 5}=25$ Rs
Daily wage of a man $=$ Rs 50
Daily wage of all men $=\frac{1600}{8}=200$ Rs
Total no. of $\operatorname{man}=\frac{200}{50}=4$

S2. Ans.(b)
Sol.
$12 \mathrm{M}+13 \mathrm{~B}=\frac{4893.75}{3}$
$12 \mathrm{M}+13 \mathrm{~B}=1631.25 \ldots$ (i)
$5 M+6 B=\frac{3562.5}{5}$
$5 M+6 B=712.5$
$60 M+65 B=8156.25$
$60 M+72 B=8550.0$
$7 B=393.75$

$$
B=56.25
$$

$5 \mathrm{M}=712.5-337.50$
$M=75$
One day wage of 3 M and $4 \mathrm{~B}=3 \times 75+4 \times 56.25=450$
Rs. 3150 can be earned in $=\frac{3150}{450}=7$ days

S3. Ans.(c)
Sol.
We know work efficiency ratio of A to $\mathrm{B}=5: 4$
Let time taken by A alone to complete the work $=4 \mathrm{x}$
And by B to complete the work alone $=5 x$
Atq,
$5 x-4 x=6$
$\Rightarrow x=6$
So, A alone can complete the work in 24 day
And, B alone can complete the work in 30 day
A and B working together can complete the work in
$=\frac{1}{\frac{1}{30}+\frac{1}{24}}=\frac{120}{9}=13 \frac{1}{3}$ days

S4. Ans.(b)
Sol.
Let A does 100n units of work in one day
So C does 120 n units of work in one day
And B does $75 n$ units of work in one day
Total work $=120 \mathrm{n} \times 45$ units
So, ' $X^{\prime}=\frac{120 n \times 45}{(75 n+100 n)}$ days.
$=\frac{5400}{175}$ days
$=\frac{216}{7}$ days
$=30 \frac{6}{7}$ days

S5. Ans.(b)
Sol.
(Priya and Monika)'s 1 day work alternatively
$=\frac{1}{18}+\frac{1}{30}=\frac{8}{90}$
(Priya and Monika)'s 22 days work
$=\frac{8 \times 11}{90}=\frac{88}{90}$
Remaining work $=1-\frac{88}{90}=\frac{1}{45}$
$\therefore \frac{1}{45}$ work done by Priya $=\frac{2}{5}$ days
Total time $=22 \frac{2}{5}$ days .

S6. Ans.(b)
Sol.
Ratio of efficiency of A to $B=7: 5$
So ratio of time required to complete a work $=5: 7$
Now ATQ,
$(7-5) \rightarrow 6$ day
$2 \rightarrow 6$
$5 \rightarrow \frac{6}{2} \times 5=15$ days
So, ' A ' can complete the work alone in 15 days

S7. Ans.(c)
Sol.
Efficiency ratio
$\begin{array}{ccc}\mathrm{P}+\mathrm{Q} & \mathrm{R} & \rightarrow \mathrm{P}+\mathrm{Q}+\mathrm{R} \\ 2 & 1 & 3 \\ & & \\ \mathrm{P}+\mathrm{R} & \mathrm{Q} & \rightarrow \mathrm{P}+\mathrm{Q}+\mathrm{R} \\ 3 & 1 & 4\end{array}$
Make $\mathrm{P}+\mathrm{Q}+\mathrm{R}$ equal in both the cases
$\Rightarrow P+Q \quad R \quad P+Q+R$
$2 \times 41 \times 4 \quad 3 \times 4$
$\mathrm{P}+\mathrm{R} \quad \mathrm{Q} \quad \mathrm{P}+\mathrm{Q}+\mathrm{R}$
$3 \times 31 \times 3 \quad 4 \times 3$
R's efficiency $=4$
Q's efficiency $=3$
P's efficiency $=5$
Total work $=(4+3+5) \times 36$
Time by $R=\frac{12 \times 36}{4}=108$ days.

S8. Ans.(b)
Sol.
Let efficiency of 1 man and 1 woman is m and w respectively.
So, total work
$5 \mathrm{~m} \times 16=8 \mathrm{w} \times 15$
$\frac{\mathrm{m}}{\mathrm{w}}=\frac{3}{2}$
Work done in $=\frac{3 \times 5 \times 16}{6+6}=20$ days
S9. Ans.(d)
Sol. Ratio of efficiency of A and B=3:5
\Rightarrow Time taken be A and B alone to complete the work $=5: 3$
Ratio of time taken by B and C alone to complete the work $=4: 5$
\Rightarrow Ratio of time taken by A, B and C alone to complete the work $=20: 12: 15$
Let, A, B and C alone can complete the work alone is $20 x, 12 x$ and $15 x$ days respectively.
ATQ,
$\frac{12}{20 x}+\frac{12}{12 x}=\frac{80}{100}$
$\Rightarrow \frac{144+240}{240 x}=\frac{4}{5}$
$\Rightarrow \frac{5 \times 384}{4 \times 240}=x$
$\Rightarrow x=2$
Let in ' a ' days ' B ' and ' C ' can complete 60% of work
ATQ,
$\frac{a}{12 \times 2}+\frac{a}{15 \times 2}=\frac{60}{100}$
$\Rightarrow \frac{5 a+4 a}{120}=\frac{3}{5}$
$\Rightarrow \mathrm{a}=\frac{3}{5} \times \frac{120}{9}=8$ days
S10. Ans.(a)
Sol.
ATQ,
$\frac{8}{24}+\frac{12}{32}+\frac{28}{x}=1$ (where x is time taken by R to complete whole work)
$\frac{1}{3}+\frac{3}{8}+\frac{28}{x}=1$
x $=96$ days
Time taken by R to complete the whole work= 96days
S11. Ans.(a)
Sol.
Let R worked for x days
$\therefore \frac{(x+4+4)}{24}+\frac{4}{32}+\frac{x}{40}=1$
$\Rightarrow \frac{x+8}{24}+\frac{x}{40}=\frac{7}{8}$
$\Rightarrow 5 \mathrm{x}+40+3 \mathrm{x}=105$
$\Rightarrow \mathrm{x}=\frac{65}{8}$ days

S12. Ans. (d)
Sol. Inlet pipe can fill the tank $=4$ hours
Outlet pipe can empty the tank $=30$ hours
Ratio of efficing
Inlet $\rightarrow+15$
Per hour work
Outlet \rightarrow - 2 -
To prevent overflow we required
7 more outlet piper
So outlet efficiency become $=-16$ per hour

Bank Prime Test Pack

IBPS | SBI | LIC | RBI | Others

1200+ Total Tests

12 Months Validity
S13. Ans.(e)
Sol. Let Pipe A can fill the tank in x minutes
\Rightarrow Pipe B can fill the tank in $x \times \frac{100}{150}=\frac{2 x}{3}$
ATQ,
$\frac{1}{x}+\frac{3}{2 x}=\frac{1}{18}$
$\Rightarrow \frac{5}{2 X}=\frac{1}{18}$
$\Rightarrow \mathrm{x}=45$
Capacity of tank $=45 \times 6=2701$
S14. Ans.(c)
Sol.
$\xrightarrow{\text { B }}$
In 2 hours, part of the tank filled $=2(4)=8$ units
Now required time $=\frac{(30-8)}{5}$
$=\frac{22}{5}$
$=4$ hour 24 mins .

S15. Ans.(b)
Sol. Let, the capacity of tank $=180 \ell$
' A ' one minutes work $=\frac{180}{30}=6$
'B' one minute work $=\frac{180}{36}=5$
Problem occur after ' x ' minutes, due to this
New efficiency of ' A ' $=6 \times \frac{5}{6}=5$
New efficiency of 'B' $=5 \times \frac{9}{10}=4.5$
ATQ,
$9.5 x+11\left[\frac{33}{2}-x\right]=180$
$181.5-180=1.5 x$
$x=\frac{1.5}{1.5}=1$ minutes

S1. Ans.(e)

Sol. Amount invested by Man in each Part $=\frac{9600}{2}=4800$ Rs
ATQ -
$\frac{4800 \times 12.5 \times \mathrm{T}}{100}+\frac{4800 \times 16 \times(\mathrm{T}+2)}{100}=4272$
$600 \mathrm{~T}+768 \mathrm{~T}+1536=4272$
$1368 \mathrm{~T}=2736$
$\mathrm{T}=\frac{2736}{1368}$
T=2 years

S2. Ans.(c)
Sol.
$\frac{\mathrm{P} \times 15 \times 2}{100}+\frac{(\mathrm{P}+800) \times 8.5 \times 2}{100}=4836$
$\frac{30 \mathrm{P}}{100}+\frac{17 \mathrm{P}+13600}{100}=4836$
$47 \mathrm{P}=483600-13600$
$47 \mathrm{P}=470000$
$\mathrm{P}=10000 \mathrm{Rs}$
Amount invested by veer at rate of $8.5 \%=(\mathrm{P}+800)$
$=(10000+800)$
$=10800 \mathrm{Rs}$

S3. Ans.(e)

Sol. Let man invested for T year and at the rate of $\mathrm{R} \%$ per annum
Given, $T=\frac{R}{4}$
ATQ -
$\frac{8500 \times \frac{R}{4} \times R}{100}=1360$
$\mathrm{R}^{2}=\frac{1360 \times 4}{85}$
$\mathrm{R}^{2}=64$
$\mathrm{R}=8 \%$
Time $=\frac{8}{4}=2$ years

S4. Ans.(b)

Sol. Let Adarsh invested Rs 100x
For four years
ATQ -
$100 \mathrm{x}+\frac{100 \mathrm{x} \times \mathrm{R} \times 4}{100}=134 \mathrm{x}$
$4 \mathrm{R}=34$
$\mathrm{R}=\frac{34}{4}$
$\mathrm{R}=8.5 \%$

S5. Ans.(c)

Sol. Total interest at end of two years
$=\frac{12600 \times 15 \times 2}{100}=3780$
Amount for next two years
$=12600+3780-6380$
$=10000$ Rs
Amount which Abhishek will pay to Satish at end of next two years
$=10000+\frac{10000 \times 15 \times 2}{100}$
$=13000 \mathrm{Rs}$

S6. Ans.(c)

Sol. Amount - principal $=\frac{\text { Principal } \times \text { Rate } \times \text { time }}{100}$
$25920-16200=\frac{16200 \times \mathrm{R} \times 4}{100}$
$\mathrm{R}=\frac{9720 \times 100}{16200 \times 4}$
$\mathrm{R}=15 \%$
Amount $=16200+\frac{16200 \times 2 \times(15+5)}{100}$
$=16200+6480$
$=22680 \mathrm{Rs}$
S7. Ans.(d)
Sol. Interest earns in C.I.
$\Rightarrow 1655=\mathrm{P}\left[\left(1+\frac{10}{100}\right)^{3}-1\right]$
$\mathrm{P}=5000$
Total amount $=5000+1655=6655$
Interest earn from scheme Q
$=\frac{6655 \times 8 \times 5}{100}$
$=2662$ Rs .

S8. Ans(e)
Sol.
Let sum of money invested $=X$ Rs.
ATQ -
$X\left(1+\frac{r}{100}\right)^{2}=4840-$
Also,
$\mathrm{X}\left(1+\frac{r}{100}\right)^{4}=5856.4$
From $\frac{(i)^{2}}{(i i)}$ we get -
$X=\frac{4840 \times 4840}{5856.4}$
$X=4000$ Rs.
Required amount $=4000 \times \frac{145}{100}=5800$ Rs.

S9. Ans.(e)
Sol. Let the amount be Rs x
ATQ
$x \times \frac{30}{100}-x \times \frac{21}{100}=432$
$x=$ Rs 4800

S10. Ans.(e)
Sol. Let amount Sonu invested $=121 x$
Interest that Sonu will earn in first year $=121 \times \times \frac{100}{11 \times 100}$
$=11 \mathrm{x}$
Interest that he will earn in second year $=11 x+11 x \times \frac{1}{11}=12 x$
ATQ,
$\Rightarrow 12 x=372$
$\Rightarrow \mathrm{x}=\frac{372}{12}$
$\Rightarrow \mathrm{x}=31$
Hence, amount invested by Sonu $=121 \mathrm{x}=31 \times 121$
$121 x=3751$ Rs.

S11. Ans.(a)
Sol. Let amount be Rs. P
S.I. $=\frac{P \times R \times T}{100}[\mathrm{R} \rightarrow$ rate, $\mathrm{T} \rightarrow$ time $]$
$180=\frac{P \times 5 \times 3}{100}$
P = Rs. 1200
We know,
C.I. $=P\left[\left(1+\frac{R_{1}}{100}\right)\left(1+\frac{R_{2}}{100}\right)-1\right]$
$R_{1}=10 \%$
$R_{2}=R$
$318=1200\left[\left(1+\frac{10}{100}\right)\left(1+\frac{R}{100}\right)-1\right]$
$\frac{318}{1200}+1=\left[\left(\frac{11}{10}\right)\left(1+\frac{R}{100}\right)\right]$
$\frac{1518}{1200}=\frac{11}{10} \times\left(\frac{100+R}{100}\right)$
$\therefore \mathrm{R}=15 \%$

S12. Ans(d)
Sol. Let Veer invested = Rs. P
So, interest get by Veer after 10 years $=$ Rs. P
ATQ -
$P \times 10 \times R 100=P$
$\mathrm{R}=10 \%$
Required amount $=1600 \times 1+101003$
$=1600 \times 1.331$
$=2129.6$ Rs.

S13. Ans.(a)
Sol. Let part of sum invested at $7 \%=x$
Then part invested at $5 \%=3600-x$
ATQ,
$\Rightarrow x \times 7 \times 1100+3600-\mathrm{x} 100 \times 5=204$
$\Rightarrow 7 \mathrm{x}+18000-5 \mathrm{x}=20400$
$\Rightarrow \mathrm{x}=1200$

S14. Ans.(d)
Sol. Principal = 2500
Total interest earned in 2 year
$=25001+201002-1$
$=1100$
Interest earned in $2^{\text {nd }}$ year $=$ Two years Interest - First year Interest
= 1100 - 500
$=600$
Difference between third- and second-year interest $=$ Interest on $2^{\text {nd }}$ year interest
$=600 \times 20100$
$=120$

S15. Ans.(e)
Sol. Let the amount be Rs x
ATQ
$x \times 30100-x \times 21100=432$
$x=R s 4800$

Quiz - 18

S1. Ans.(d)
Sol. Total distance $=9 \times 70=630$
New speed $=\frac{630}{6}=105 \mathrm{~km} / \mathrm{hr}$
Increase in speed $=\frac{105-70}{70} \times 100=50 \%$
S2. Ans.(e)
Sol. Distance $=180$ meter
Time $=20$ second
Relative speed of train and car
$=\frac{180}{20}=9 \mathrm{~m} / \mathrm{s}$
Let speed of car $=x \mathrm{~m} / \mathrm{s}$
So speed of train $=\frac{2}{3} x \mathrm{~m} / \mathrm{s}$
$x-\frac{2}{3} x=9 \mathrm{~m} / \mathrm{s}$
$x=27 \mathrm{~m} / \mathrm{s}$
Speed of car in $\mathrm{km} / \mathrm{hr}=\frac{27 \times 18}{5}=97.2 \mathrm{~km} / \mathrm{hr}$

S3. Ans.(b)
Sol.
ATQ,
$\frac{112}{x}=y \Rightarrow 112=x y$
Now x and y can be written as
$(2,56)(4,28)(8,14)(16,7)$ or
$(56,2)(28,4)(14,8)(7,16)$
Hence two possible co-prime pairs are possible,
i.e. $(7,16)$ or $(16,7)$

Hence it can't be determined
S4. Ans.(b)
Sol.
Anurag's speed $=\frac{60}{10}=6 \mathrm{~km} / \mathrm{hr}$
Dharam's speed $=\frac{60}{15}=4 \mathrm{~km} / \mathrm{hr}$
ATQ,
Let length of race be ' D ' meters.
So,
$\frac{D}{D-200}=\frac{6}{4}$
$\Rightarrow 2 \mathrm{D}=1200$
$\mathrm{D}=600 \mathrm{~m}$
S5. Ans.(d)
Sol.
Radius of wheel $=\frac{84}{2} \mathrm{~cm}=42 \mathrm{~cm}$
Distance travelled in one revolution
$=2 \pi r=2 \times \frac{22}{7} \times 42$
$=264 \mathrm{~cm}$
Lets revolution made by wheel $=X$
So total distance travelled = distance travelled in X number of revolution
$132=\frac{264 \mathrm{X}}{40 \times 60}$
$\mathrm{X}=\frac{132 \times 40 \times 60}{264}$
$X=1200$

S6. Ans. (d)
Sol.
In 15 seconds,
distance travelled by First car
$=15 \times 36 \times \frac{5}{18}=150 \mathrm{~m}$
Distance travelled by second car $=15 \times 48 \times \frac{5}{18}=200$
\therefore Required distance $=\sqrt{(150)^{2}+(200)^{2}}=250 \mathrm{~m}$

S7. Ans.(e)
Sol. Let the speed of the car be $x \mathrm{kmph}$.
So, $x-38=\left(\frac{40+60}{20}\right) \times \frac{18}{5} \mathrm{kmph}$
or, $x-38=18$
$\therefore x=56 \mathrm{kmph}$
S8. Ans.(a)
Sol. Total distance covered by Vikash $=9+1=10 \mathrm{~km}$.
Time taken by Vikash $=10 \times 6$
$=60 \mathrm{~min}$
So, time taken by Mohit $=60-4=56 \mathrm{~min}$

SBI CLERK 2021
 PRIME

Distance covered by Mohit $=9-1$
$=8 \mathrm{~km}$
Speed of Mohit $=\frac{8}{56}$
$=\frac{1}{7} \mathrm{~km} / \mathrm{min}$.
S9. Ans.(b)
Sol. Speed of train $A=\frac{400}{16}=25 \mathrm{~m} / \mathrm{sec}$
So, speed of train $B=25 \mathrm{~m} / \mathrm{sec}$
ATQ,
$\frac{400+x}{25}=24$
$x=200 \mathrm{~m}$
Now time required to cross platform by B
$=\frac{400+200+400}{25}=40 \mathrm{sec}$
S10. Ans.(c)
Sol. Let speed of train $P=4 x \mathrm{~m} / \mathrm{sec}$
Let speed of $Q=5 \times \mathrm{m} / \mathrm{sec}$
\therefore Length of train $P=4 x \times 6=24 x \mathrm{~m}$
Length of $\operatorname{train} Q=5 x \times 4=20 x \mathrm{~m}$
A/Q,
$\frac{24 x+480}{4 x}=18$
$\Rightarrow x=10$
\therefore Required time $=\frac{200+480}{50}=13.6 \mathrm{sec}$
S11. Ans.(e)
Sol. Using formula
$D=\frac{s\left(s+V_{1}\right)}{V_{1}} \times t_{1}=\frac{s\left(s-V_{2}\right)}{V_{2}} \times t_{2}$
Where d is distance, s is original speed and v_{1}, v_{2} are increased and decreased speed respectively
t_{1}, t_{2} are time decreased and increased time respectively.
$\frac{s(s+20)}{20} \times \frac{40}{60}=\frac{s(s-30)}{30} \times \frac{70}{60}$
$\mathrm{s}=330 \mathrm{~km} / \mathrm{h}$
Distance $=330 \times \frac{(330+20)}{20} \times \frac{40}{60}=3850 \mathrm{~km}$

S12. Ans.(d)
Sol.
Let the length of train $=x$
and, the speed of train $=s$
ATQ,
$\frac{\mathrm{x}+100}{12}=\mathrm{s}=\frac{3 \mathrm{x}}{21}$
$\frac{x+100}{12}=\frac{x}{7}$
$7 x+700=12 x$
$5 x=700$
$x=140$
Speed of train $=\frac{3 \times 140}{21}=20 \mathrm{~m} / \mathrm{s}$
S13. Ans.(c)
Sol.
Let upstream speed $=x$
Downstream speed $=11 x$
Speed of boat $=\frac{1}{2}(x+11 x)=30$
$\Rightarrow \mathrm{x}=\frac{30 \times 2}{12}=5$
\Rightarrow upstream speed $=5 \mathrm{~km} / \mathrm{hr}$
Distance travelled in 5 hours in upstream $=5 \times 5=25 \mathrm{~km}$

S14. Ans.(b)
Sol.
Let speed of stream $=\mathrm{s} \mathrm{km} / \mathrm{hr}$
$\therefore(8-s) \times 6=(8+s) \times 4$
$\Rightarrow 48-6 s=32+4 s$
$\Rightarrow s=1.6 \mathrm{~km} / \mathrm{hr}$

S15. Ans.(a)
Sol.
Speed of boat in upstream $=17 \mathrm{kmph}$
Speed of river water $=3 \mathrm{kmph}$
So speed of boat in still water $=17+3=20 \mathrm{kmph}$
So speed of boat in downstream $=20+3=23 \mathrm{kmph}$

Quiz - 19

S1. Ans.(c)
Sol.
Let first term $=\mathrm{a}$
Common difference $=\mathrm{d}$
Sum of 10 terms $=\frac{10}{2}[2 a+(10-1) d]$
Average of sum $=\frac{1}{2}[2 a+(10-1) d]$

Now,
$a+\frac{112.5 a}{100}=\frac{1}{2}[2 a+(10-1) \mathrm{d}]$
Solving we get, $\mathrm{a}=4 \mathrm{~d}$
Sum of A.P = 85d
Second term $=5 \mathrm{~d}$
Required $\%=\frac{5 \mathrm{~d}}{85 \mathrm{~d}} \times 100=\frac{100}{17} \%=5 \frac{15}{17} \%$
S2. Ans.(b)
Sol. Let the fraction be $\frac{x}{y}$
ATQ,
$\frac{2.5 \mathrm{x}}{0.75 \mathrm{y}}=\frac{8}{9}$
$\Rightarrow \frac{\mathrm{x}}{\mathrm{y}}=\frac{4}{15}$
S3. Ans. (a)
Sol. Let the total number of students in the university be x
Valid votes $=\frac{x \times 80}{100}-120$
$=\frac{4 x}{5}-120$
Atq,
$\frac{3 x}{8}+\left(\frac{3 x}{8}-30\right)=\frac{4 x}{5}-120$
$\Rightarrow \frac{3 x}{4}-30=\frac{4 x}{5}-120$
$x=1800$
No. of students who do not cast their votes $=1800 \times \frac{20}{100}=360$
S4. Ans(d)
Sol. Let son's present age be x yrs
So, his father's present age $=2 x$ yrs
10 years ago, the ages would have been
$2 x-10=3(x-10)$
$2 x-10=3 x-30$
$\mathrm{X}=20 \mathrm{yrs}$
So, their present ages are 20 yrs and 40 yrs
After 15 yrs, father's and son's ages will be 55 and 35
Required ratio $=\frac{55}{35}=\frac{11}{7}$
S5. Ans(b)
Sol. Let present age of ravi and shivam be m years and n years respectively
4 years ago, $m-4+n-4=80$
$\mathrm{m}+\mathrm{n}=88 \ldots \ldots .$. (1)
Also, m-14=n-4
$\mathrm{m}-\mathrm{n}=10$.
solving eqn (1) \& (2), we get $m=49$ years and $n=39$ years
Present age of ravi=49 years

S6. Ans(c)

Sol. let the smallest odd number be ' a ' so next odd number be ' $a+2$ ' and so on $8^{\text {th }}$ number $=a+(8-1) \times 2=a+14$ (using AP, nth term $\left.=a+(n-1) \mathrm{d}\right)$
$\mathrm{ATQ}, \quad \frac{a+a+2+\cdots+a+14}{8}=10$
$8 a+56=80$ (using sum of AP)
$a=\frac{80-56}{8}=3$
Since ' a ' is smallest number, so smallest 4 numbers will be $=3,5,7,9$
Required average $=\frac{3+5+7+9}{4}=6$

S7. Ans.(d)
Sol.
Sum of ages of all the 20 members $=20 \times 25=500$
Sum of ages of first 18 members $=18 \times 24=432$
Sum of ages of last 2 members $=500-432=68$
\therefore Average age $=\frac{68}{2}=34$

S8. Ans (a)
Sol.
Profit ratio of Amit to Hemant $=\frac{60000 \times 12+68000 \times 12+76000 \times 12+84000 \times 12}{80000 \times 24}$
$=9: 5$

So, difference between their profit $=35000 \times \frac{9-5}{14}$
= Rs 10000

S9. Ans.(b)
Sol.
Let investment of A, B, C be $2 x, 5 x$ and $7 x$ respectively.
Let extra amount added by ' A ' after six months be Rs. y
ATQ,
$2 x+y=\frac{1}{2}[5 x+7 x]$
$2 x+y=6 x$
$y=4 x$
Ratio of profit share
A $-2 x \times 6+(4 x+2 x) \times 6$
B $-\overline{5 x \times 12}=48: 60: 84$
C-7x×12 $=4: 5: 7$
B's share of profit $=$ Rs 4250
$\Rightarrow 5 \rightarrow 4250$
$\Rightarrow 1 \rightarrow 850$
$\Rightarrow(4+5+7)=16 \rightarrow 16 \times 850=13600$
Total profit $=$ Rs. 13600.

S10. Ans.(e)
Sol. Let, total quantity $=100 \ell$
Quantity of milk $=60 \ell$
And quantity of milk $=40 \ell$
ATQ,
$\frac{40}{100}=\frac{60}{100+x}$
$2(100+x)=5 \times 60$
$200+2 x=300$
$2 x=100$
$x=50 \ell$
Water added in $\%=\frac{50}{100} \times 100$
$=50 \%$

S11. Ans.(e)
Sol.
SI for 2 years $=\frac{450}{3} \times 2=300$
And, S.I for 1 year $=\frac{450}{3}=150=\frac{P R}{100}$
CI for 2 years $=309$
$\mathrm{CI}_{2}-\mathrm{SI}_{2}=$ Rs. 9
Difference between C.I and S.I for 2 years $=\frac{P R^{2}}{100^{2}}=9$
$\frac{\mathrm{PR} \times \mathrm{R}}{100}=900$
$\Rightarrow R=\frac{900}{150}=6 \%$
$\mathrm{CI}_{2}-\mathrm{SI}_{2}=\mathrm{P}\left(\frac{\mathrm{R}}{100}\right)^{2}$
$9=P\left(\frac{6}{100}\right)^{2}$
A
A 른
50+
BANK PO|CLERK
2016-2021 PREVIOUS YEARS' Memory Based Papers
Useful for SBI, IBPS, RRB, RBI \& Other Bank Exams

- SBI PO | Clerk - 16 Sets
- IBPS PO | Clerk - 18 Sets
- IBPS RRB PO | Clerk - 18 Sets
- RBI Grade B | Assistant - 9 Sets
$\mathrm{P}=$ Rs. 2500

S12. Ans.(b)
Sol.
Let speed of stream $=r \mathrm{~km} / \mathrm{h}$
A/q,
$(8-r) \times 5=(8+r) \times 3$
$\Rightarrow 40-5 \mathrm{r}=24+3 \mathrm{r}$
$\Rightarrow r=\frac{16}{8}=2 \mathrm{~km} / \mathrm{h}$
S13. Ans.(c)
Sol.
We know work efficiency ratio of A to $B=5: 4$
Let time taken by A alone to complete the work $=4 x$
And by B to complete the work alone $=5 x$
Atq,
$5 x-4 x=6$
$\Rightarrow x=6$

So, A alone can complete the work in 24 day
And, B alone can complete the work in 30 day
A and B working together can complete the work in
$=\frac{1}{\frac{1}{30}+\frac{1}{24}}=\frac{120}{9}=13 \frac{1}{3}$ days
S14. Ans. (b)
Sol.
Speed $=\frac{\text { Distance }}{\text { Time }}$
Total Distance $=$ Length of bridge + Length of train
$=1+\frac{1}{2}=\frac{3}{2} \mathrm{~km}$
Speed $=\frac{\frac{3}{2}}{2 \times \frac{1}{60}}=\frac{3}{4} \times 60=45 \mathrm{kmph}$
S15. Ans.(e)
Sol.
Let the amount be Rs x
ATQ
$x \times 30100-x \times 21100=432$
$x=R s 4800$

Quiz - 20
S1. Ans.(c)
Sol.
Let, C.P. of table $=x$
Person Sells table at a profit of 10%
\Rightarrow S.P. $=1.1 \mathrm{x}$
ATQ,
$\frac{120}{100}\left[\frac{95}{100}\right] \times \mathrm{x}=1.1 \mathrm{x}+80$
$1.14 x-1.1 x=80$
$0.04 x=80$
$x=2,000$

S2. Ans.(c)
Sol.
$1^{\text {st }}$ C.P. $\rightarrow 12000$ Rs.
$1^{\text {st }}$ S.P. $\rightarrow \frac{12000 \times 80}{100}=9600$ Rs.
Now,
$2^{\text {nd }}$ C.P. $\rightarrow 9600$ Rs.
$2^{\text {nd }}$ S.P. $\rightarrow \frac{9600 \times 130}{100}=12480$ Rs.
Profit $\Rightarrow 480$ Rs.

S3. Ans.(e)
Sol.
Let selling C.P. of bike $\rightarrow 100$
Old S.P. $\rightarrow 118$
New S.P. after 10% increase $\rightarrow 118+11.8 \rightarrow 129.8$
Profit increase $=(129.8-118)$ units $\Rightarrow 295$
11.8 units $\Rightarrow 295$

1 unit $\Rightarrow 25$
New S.P. $\Rightarrow 25 \times 129.8=3245$ Rs.
S4. Ans(e)
Sol.
Given, cost price of pen $=x$ Rs. And SP=Rs 128
ATQ -
$x\left(1+\frac{(x-20)}{100}\right)=128$
$100 x+x^{2}-20 x=12800$
$x^{2}+80 x-12800=0$
$x^{2}+160 x-80 x-12800=0$
$x(x+160)-80(x+160)$
$x=80$ Rs.
For 40% profit Veer should sold the pen $=80 \times \frac{140}{100}=112 \mathrm{Rs}$.
S5. Ans(b)
Sol.
Let cost price of shirt $=100 \mathrm{x}$
So, cost price of jeans $=132.5 x$
New cost price of jeans $=132.5 x \times 1.3=172.25 x$
Selling price of jeans $=172.25 x \times 1.25=215.3125 x$
Cost price of jeans $=4134 \times \frac{132.5 x}{215.3125 x}$
$=2544$ Rs.
Cost price of shirt $=2544 \times \frac{100 x}{132.5 x}=1920$ Rs.
Marked price of shirt $=1920 \times \frac{115}{100}=2208$ Rs.

Alternate

Let cost price of jeans $=53 x$
So, cost price of shirt $=40 x$
New cost price of jeans $=53 x \times 1.3=68.9 x$
Selling price of jeans $=68.9 x \times 1.25$
So, $\quad 4134=68.9 x \times 1.25$
$x=48$
Cost price of shirt $=40 \times 48=1920$ Rs.
Marked price of shirt $=1920 \times \frac{115}{100}=2208$ Rs .

S6. Ans.(a)
Sol. Let market price $=10 x$
Then selling price will be $=10 \mathrm{x} \times \frac{90}{100}$
$=9 x$
Cost price will be $=\frac{9 x \times 100}{108}$
$=\frac{25 x}{3}$
According to question market price will be of 4 article and cost price will be of 5 article.
Required percentage $=\frac{\frac{10 x}{4}}{\frac{25 x}{3 \times 5}} \times 100$
$=\frac{10 x \times 3 \times 5}{25 x \times 4} \times 100$
$=150 \%$
S7. Ans(a)
Sol.
Total cost price of quantity of tomatoes seller had $=230 \times 10 \times 100=230000$ Rs.
So, total selling price of quantity of tomatoes seller had, if he had to gain 15% profit $=230000 \times \frac{115}{100}=$ 264500 Rs.
Total quantity of tomatoes available for selling $=230 \times \frac{80}{100}=184$ quintals
Total selling price of half of 184 quintals of tomatoes which seller sold at Rs. 20 per $\mathrm{kg}=184 \times \frac{1}{2} \times$
$20 \times 100=184000$ Rs .
So, seller had to sell the remaining tomatoes $=\frac{264500-184000}{92} \times \frac{1}{100}$
$=8.75 \mathrm{Rs} . / \mathrm{kg}$
S8. Ans.(b)
Sol.
Volume of cylinder $=$ Volume of ' x ' cubes
$\frac{22}{7} \times 14 \times 14 \times 196=x \times 7^{3}$
$\Rightarrow \mathrm{x}=352$

S9. Ans.(d)
Sol.
Let radius of smaller \& larger circles be r_{1} \& r_{2} respectively.
$2 \pi r_{1}=132$
$\mathrm{r}_{1}=21 \mathrm{~m}$
$2 \pi r_{2}=176 \Rightarrow r_{2}=28 \mathrm{~m}$.
\therefore Required difference

$$
\begin{gathered}
=\pi\left(r_{2}^{2}-r_{1}^{2}\right) \\
=\frac{22}{7} \times 49 \times 7
\end{gathered}
$$

S10. Ans.(d)
Sol.
Curved surface area of cone $=\pi r \ell=1.76 \mathrm{~m}^{2}$

$$
\frac{22}{7} \times 70 \times \ell=17600
$$

$\ell=80$

$$
\begin{aligned}
& \text { Height of cone }=\sqrt{80^{2}-70^{2}} \\
& =\sqrt{6400-4900} \\
& =\sqrt{1500}=10 \sqrt{15} \mathrm{~cm}
\end{aligned}
$$

S11. Ans.(d)
Sol.
Required probability $=\frac{{ }^{4} C_{2}}{{ }^{7} C_{2}}$
$=\frac{4 \times 3}{7 \times 6}$
$=\frac{2}{7}$
S12. Ans.(a)
Sol.
Required probability $=\frac{{ }^{5} C_{1} \times{ }^{7} C_{1}+{ }^{7} C_{2} \times{ }^{5} C_{0}}{{ }^{12} C_{2}}$
$=\frac{35+21}{66}=\frac{56}{66}=\frac{28}{33}$
S13. Ans.(c)
Sol. Favorable cases $=(1,3,5)=3$
Possible cases $=6$
\therefore Required probability $=\frac{3}{6}=\frac{1}{2}$
S14. Ans.(c)
Sol. Total number formed $=6 \times 5 \times 4 \times 3 \times 2=720$

S15. Ans.(a)
Sol.
No. of ways $=7_{C_{5}} \times 3_{\mathrm{C}_{2}}=\frac{7 \times 6}{2 \times 1} \times 3=63$

S1. Ans.(a)
Sol.
Required total
$\frac{3}{4} \times 32+\frac{3}{7} \times 35$
=24+15=39 lakhs

S2. Ans.(c)
Sol. Required ratio
$\frac{\frac{1}{6} \times 24+\frac{1}{3} \times 12}{\frac{3}{7} \times 28+\frac{3}{8} \times 16}$
$\frac{4+4}{12+6}=\frac{8}{18}=4: 9$
S3. Ans.(b)
Sol. Male in M.P. in year 2011
$\frac{4}{9} \times 18=8$ lakhs
Required difference
$\frac{1}{8} \times 8=1$ lakh

S4. Ans.(d)
Sol. Required percentage
$\frac{\frac{4}{7} \times 28-\frac{5}{8} \times 16}{\frac{4}{7} \times 28} \times 100=\frac{16-10}{16} \times 100=\frac{600}{16}=37.5 \%$
S5. Ans.(e)
Sol. 24% of males of state A.P. in year 2012
$=\frac{24}{100} \times \frac{4}{5} \times 25,00,000$
$=4,80,000$
\therefore Required percentage $=\frac{4,80,000}{35,00,000} \times 100=13.71 \%$
S6. Ans.(b)
Sol. Number of watches sold by shopkeeper P
$=\frac{484}{22} \times 34$
$=748$
Number of shocks sold by shopkeeper T
= 1550
\therefore Required difference $=1550-748$
$=802$

S7. Ans.(a)
Sol. No. of watch \& shoes sold by Q
$=\frac{2304}{24}[48+28]$
$=\frac{2304}{24}[76]$
$=96 \times 76$
No. of watches \& shoes sold by S
$=\frac{1280}{40} \times 60$
$=32 \times 60$
Required ratio $=\frac{96 \times 76}{32 \times 60}=\frac{19}{5}$

S8. Ans.(c)
Sol.
No. of shoes sold by shopkeeper T
$=\frac{1550}{25} \times 60$
$=62 \times 60=3720$
\therefore Shoes sold by T which are not defective
$=\frac{1}{5} \times 3720=744$
S9. Ans.(b)
Sol.
Total product sold by shopkeeper S
$=100 \times \frac{1280}{(100-60)}=3200$
Total product sold by shopkeeper R
$=100 \times \frac{1040}{(100-80)}=5200$
\therefore Required percentage
$=\frac{2000}{5200} \times 100$
$\simeq 38 \%$

S10. Ans.(e)
Sol.
Watches \& shocks sold by R
$=1040+\frac{1040}{20} \times 13$
$=1040+676=1716$
Watches and shoes sold by P
$=\frac{484}{22} \times 78=1716$
Required $\%=\frac{1716}{1716} \times 100=100 \%$
S11. Ans.(e)
Sol.
Total no. of male students learning Indian Classical in schools P and S together
$=\frac{5}{8} \times \frac{40}{100} \times 400+\frac{3}{4} \times \frac{16}{100} \times 375$
$=145$
And total female students learning Indian Classical in same schools together
$=\frac{3}{8} \times \frac{40}{100} \times 400+\frac{1}{4} \times \frac{16}{100} \times 375$
$=75$
\therefore Required ratio $=\frac{145}{75}$
$=\frac{29}{15}$

S12. Ans.(d)
Sol.
Total students who are below 17 years from Q
$=\frac{1}{9} \times \frac{24}{100} \times 225$
$=6$
\therefore Females who are below 17 years
$=\frac{1}{2} \times 6=3$
\therefore Required no. of females (≥ 17 years) $=18-3=15$

S13. Ans.(c)
Sol.
Required difference
$=\frac{1}{3} \times \frac{24}{100} \times 225+\frac{3}{5} \times \frac{20}{100} \times 525$
$=18+63$
$=81$

S14. Ans.(b)
Sol.
Required average
$=\frac{1}{3} \times\left(\frac{60}{100} \times 400+\frac{76}{100} \times 225+\frac{80}{100} \times 525\right)$
$=\frac{1}{3} \times(240+171+420)$
$=277$

S15. Ans.(d)
Sol.
Total students in Q and S together
$=\frac{24}{100} \times 225+\frac{16}{100} \times 375$
$=114$
Total students in P and R together
$=\frac{40}{100} \times 400+\frac{20}{100} \times 525$
$=265$
\therefore Required percentage
$\frac{265-114}{265} \times 100$
$\simeq 57 \%$

S1. Ans.(c)
Sol.
Required difference
$=\frac{(17+24)-(18+16)}{100} \times 33000$
$=(41-34) \times 330$
$=2310$
S2. Ans.(e)
Sol.
Required difference $=\frac{[43-(100-34-43)]}{100} \times \frac{17}{100} \times 33000$
$=\frac{20}{100} \times \frac{17}{100} \times 33000$
$=1122$

S3. Ans.(a)
Sol.
Required percentage
$=\frac{(12+17-16)}{16} \times 100$
$=\frac{13}{16} \times 100$
$=81.25 \%$

S4. Ans.(b)
Sol.
Average population of $\mathrm{A}, \mathrm{C} \& \mathrm{Y}=\frac{18+16+17}{3}$
= 17\%
Average population of $B \& X=\frac{24+12}{2}$
= 18\%
Required difference
$=\frac{(18-17)}{100} \times 33000$
$=330$

S5. Ans.(d)
Sol.
Population of city C not doing govt. Job
$=\frac{(40+30)}{100} \times \frac{16}{100} \times 33000$
$=\frac{70}{100} \times \frac{16}{100} \times 33000$
$=3696$

S6. Ans(a)
Sol. no. of valid votes cast in village $B=10000 \times \frac{25}{100} \times \frac{80}{100} \times \frac{90}{100}=1800$

S7. Ans(d)
Sol. total valid votes cast in village $C=10000 \times \frac{20}{100} \times \frac{90}{100}=1800$
Let winning candidate got $\mathrm{x} \%$ of votes cast and Losing Candidate got ($\mathrm{x}-12$) \% of votes cast. Now, ATQ
$x+x-12=100$
$x=56 \%$
Votes obtained by losing candidate $=\frac{44}{100} \times 1800=792$
S8. Ans(e)
Sol. average registered voters of B,C,D $=\frac{(25+20+15)}{100} \times \frac{10000}{3}=2000$
S9. Ans(c)
Sol. votes cast -
$A=10000 \times \frac{20}{100} \times \frac{70}{100}=1400$
$B=10000 \times \frac{25}{100} \times \frac{65}{100}=1625$
$\mathrm{D}=10000 \times \frac{15}{100} \times \frac{80}{100}=1200$
$\mathrm{E}=10000 \times \frac{20}{100} \times \frac{75}{100}=1500$
Maximum voters cast their votes in village B.
S10. Ans(b)
Sol. average number of registered voters from village A \& C $=\frac{10000}{2} \times \frac{20+20}{100}=2000$
Average no. of registered voters from village B, D \& E $=\frac{10000}{3} \times \frac{(25+15+20)}{100}=2000$
Required $\%=\frac{2000}{2000} \times 100=100 \%$
S11. Ans(d)
Sol. total watches manufactured by Casio, Titan \& Sonata $=\frac{20+15+25}{100} \times 1000=600$ required average $=\frac{600}{3}=200$

S12. Ans(c)
Sol. required ratio $=\frac{10+25}{100} \times 1000: \frac{20+20}{100} \times 1000=7: 8$
S13. Ans(b)
Sol. watches manufactured of Sonata $=\frac{25}{100} \times 1000=250$
Watches manufactured of Rado $=\frac{10}{100} \times 1000=100$
Required \% $=\frac{250-100}{100} \times 100=150 \%$
S14. Ans(e)
Sol. in next year
No. of Titan watches manufactured $=\frac{110}{100} \times \frac{15}{100} \times 1000=165$
No. of Timex watches manufactured $=\frac{90}{100} \times \frac{10}{100} \times 1000=90$
Required difference $=165-90=75$

S15. Ans(b)
Sol. Average no. of watches manufactured $=\frac{1000}{6}=166.67$
Watches manufactured
Casio $=\frac{20}{100} \times 1000=200$
Titan $=\frac{15}{100} \times 1000=150$
Sonata $=\frac{25}{100} \times 1000=250$
Timex $=\frac{10}{100} \times 1000=100$
Fossil $=\frac{20}{100} \times 1000=200$
Rado $=\frac{10}{100} \times 1000=100$
Required answer $=$ Casio, Sonata, Fossil $=3$

Quiz - 23

S1. Ans(d)
Sol. required difference = average marks scored by Student A - Average marks scored by Student B
$\therefore \frac{70+90+60+55}{4}-\frac{50+80+75+65}{4}=\frac{5}{4}=1.25$
S2. Ans(c)
Sol. marks obtained by student A in Math and Computer together $=70+90=160$ marks obtained by student B in Science and English together=75+65 =140
required ratio $=160: 140=8: 7$
S3. Ans(b)
Sol. Overall percentage marks of Student $B=\frac{50+80+75+65}{400} \times 100=67.5$

S4. Ans(c)
Sol. Marks Scored by Student A in Math =70
Marks Scored by Student B in Science and English $=75+65=140$
Required $\%=\frac{70}{140} \times 100=50$
S5. Ans(b)
Sol. A.T.Q, passing marks $=\frac{40}{100} \times 120=48$
\therefore required difference $=80-48=32$
S6. Ans(c)
Sol. amount received by Rohit $=4000+\frac{4000 \times 10 \times 2}{100}=R s .4800$
S7. Ans(e)
Sol. interest amount received by Karan $=\frac{8000 \times 10 \times 2}{100}=$ Rs. 1600
Interest amount received by Mahesh $=\frac{6000 \times 12 \times 4}{100}=R s .2880$
Required \% $=\frac{2880-1600}{1600} \times 100=80 \%$

S8. Ans(d)
Sol. total interest amount received by Anurag \& Rohit together $=\frac{4000 \times 16 \times 4}{100}+\frac{4000 \times 10 \times 2}{100}=$ Rs. 3360

S9. Ans(a)
Sol. interest received by Karan $(\mathrm{SI})=\frac{8000 \times 10 \times 2}{100}=$ Rs. 1600
Interest received by Karan $(C I)=8000\left(1+\frac{10}{100}\right)^{2}-8000=R s .1680$
Required value $=1680-1600=R s .80$

S10. Ans(e)
Sol.
Interest received by Karan $=\frac{8000 \times 10 \times 2}{100}=$ Rs. 1600
Interest received by Anurag $=\frac{4000 \times 16 \times 4}{100}=R s .2560$
Interest received by Mahesh $=\frac{6000 \times 12 \times 4}{100}=R s .2880$
Interest received by Rohit $=\frac{4000 \times 10 \times 2}{100}=R s .800$
Clearly, Mahesh had received highest interest

S11. Ans(b)
Sol.
Number of Honda city car sold in Ahmedabad=320
Number of Innova car sold in Surat $=480$
Required percentage $=\frac{320}{480} \times 100=66 \frac{2}{3} \%$
S12. Ans(d)
Sol. Total creta car sold in Delhi and Mohali together $=420+280=700$
Total innova car sold in Kolkata and Ahmedabad together $=320+500=820$
Required ratio $=\frac{700}{820}=35: 41$

S13. Ans(a)
Sol. total number of cars sold in Kolkata=320+360+460=1140

S14. Ans(e)
Sol. Total number of Honda city cars sold in delhi=540
Total number of creta cars sold in surat $=450$
Required difference $=540-450=90$

S15. Ans(c)
Sol. Total number of Honda city car sold in all the cities together $=460+320+340+540+420=2080$
Average $=\frac{2080}{5}=416$

S1. Ans.(b)
Sol. Total rooms booked in Oberai on Tuesday and Thursday $=280+520=800$
Total rooms books in Grand on Monday and Thursday $=280+720=1000$
Required percentage $=\frac{1000-800}{1000} \times 100=20 \%$
S2. Ans.(d)
Sol. Total rooms booked in Oberai, Lodhi and Taj on Monday
$=360+260+640=1260$
Total rooms booked in Taj, Grand and Eros on Thursday
$=375+720+275=1370$
Required difference $=1370-1260=110$
S3. Ans.(a)
Sol.
Total room booked in Eros on Wednesday and Thursday $=265+275=540$
Total rooms booked in Lodhi on Thursday and Friday $=215+305=520$
Required ratio $=540: 520$
= 27 : 26
S4. Ans.(c)
Sol.
Average of room booked in Eros on Monday, Wednesday and Friday
$=\frac{155+265+315}{3}$
$=245$
Average of room booked in 'Grand' on Monday \& Friday
$=\frac{280+220}{2}$
$=250$
Required sum $=245+250=495$
S5. Ans.(e)
Sol.
Required percent $=\frac{480-360}{360} \times 100=33 \frac{1}{3} \%$
S6. Ans.(c)
Sol.
Required difference $=\frac{(16-12)}{100} \times 45000=1800$
S7. Ans.(a)
Sol.
Required average $=\frac{1}{3} \times(24+8+4) \times 450=5400$

S8. Ans.(d)
Sol. Required percentage $=\frac{36-24}{24} \times 100=50 \%$
S9. Ans.(b)
Sol. No. of candidates who are males who are selected from Etawah
$=\frac{12}{100} \times \frac{80}{100} \times 45000$
$=4,320$

S10. Ans.(a)
Sol. Required percentage $=\frac{8}{24} \times 100=33 \frac{1}{3} \%$
S11. Ans.(a)
Sol. Required percentage $=\frac{45}{75} \times 100=60 \%$
S12. Ans.(b)
Sol. Required average $=\frac{1}{5} \times(64+60+72+40+84)$
$=\frac{1}{5} \times 320$
$=64$

S13. Ans.(c)
Sol. Required ratio $=\frac{(80+60)}{(60+40)}$
$=\frac{140}{100}=\frac{7}{5}$
S14. Ans.(d)
Sol. Required difference
$=(60+80+45+75+90)-(64+60+72+40+84)$
$=350-320$
$=30$

S15. Ans.(b)
Sol. Required percentage $=\frac{90-84}{90} \times 100$
$=\frac{100}{15}=\frac{20}{3} \%=6 \frac{2}{3} \%$

$$
\text { Quiz - } 25
$$

S1. Ans.(c)
Sol.
Let total production of the company be x
\therefore Required percent $=\frac{(.30 x-0.10 \mathrm{x})}{0.30 \mathrm{x}} \times 100$
$=\frac{2}{3} \times 100=66 \frac{2}{3} \%$ less

Required difference $=30 \%$ of 1,20,000 - 20\% of 1,20,000 $=12000$

S3. Ans.(e)
Sol.

BANK
 MAHA PACK

Live Class, Video Course, Test Series, eBooks

Bilingual (with eBooks) 12 Months Validity

S4. Ans.(d)
Sol.
Let total production be x
ATQ,
10% of $x=15000$
$\frac{x}{10}=15000$
$x=1,50,000$
Required average $=\frac{10 \% \text { of } 1,50,000+50 \% \text { of } 1,50,000}{2}$
$=\frac{15000+75000}{2}=45000$
S5. Ans.(b)
Sol. Let total production of each previous years be x
$\therefore \frac{30}{100} \mathrm{x}=12000$
$\mathrm{x}=40000$
Total production in $2018=\frac{110}{100} \times 40000$
$=44000$.

S6. Ans.(a)
Sol.
Total markers sold by Deepak $=450+650+550=1650$
Total markers sold by Inder $=800+750+650$
$=2200$
Required $\%=\frac{2200-1650}{2200} \times 100$
$=\frac{550}{2200} \times 100$
$=25 \%$

S7. Ans.(d)
Sol. 'Y' markers sold by all the fives sellers $=650+500+500+900+750=3300$
' Z ' marker sold by all the five sellers $=550+700+600+750+650=3250$
Required ratio $=\frac{3300}{3250}=\frac{66}{65}$

S8. Ans.(b)
Sol. Average number of marker sold by Yogesh $=\frac{600+500+700}{3}=600$
Average number of marker sold by Aman $=\frac{400+500+600}{3}=500$
Required difference $=600-500=100$
S9. Ans.(e)
Sol.
' X ' type marker sold by Yogesh, Shubham and Aman together $=600+750+400=1750$
'Z' type marker sold by Yogesh, Shubham and Inder together $=700+750+650=2100$
Required \% $=\frac{2100-1750}{2100} \times 100$
$=16 \frac{2}{3} \%$
S10. Ans.(c)
Sol. Required difference
$=(450+650+550+600+500+700+400+500+600)-(750+900+750+800+750+650)$
$=4950-4600=350$

S11. Ans.(b)
Sol.
Total number of students registered for CGL
$=25+35+40+55+45$
$=200$
Total number of students registered for CHSL
$=20+30+35+45+20$
$=150$

$$
\text { Required } \%=\frac{200-150}{150} \times 100
$$

$=\frac{50}{150} \times 100=33 \frac{1}{3} \%$
S12. Ans.(e)
Sol.
Total students registered for all the three exams in 2012 and 2013 together
$=15+25+20+25+35+30$
$=150$
Total students registered for all the three exams in 2014 and 2015 together
$=35+40+35+45+55+45$
$=255$
Required ratio $=\frac{150}{255}=\frac{10}{17}$
S13. Ans.(c)
Sol.
Average number of students registered for MTS exam
$=\frac{15+25+35+45+40}{5}=\frac{160}{5}=32$

Average number of students registered for CHSL exam
$=\frac{20+30+35+45+20}{5}$
$=\frac{150}{5}=30$
Required difference $=32-30=2$
S14. Ans.(a)
Sol.
Total students registered for all the three exams in 2016
$=40+45+20$
$=105$
Number of appeared students
$=\frac{80}{100} \times 105$
$=84$
Students appeared for MTS exam
$=\frac{84}{7} \times 3$
$=36$
Required $\%=\frac{36}{40} \times 100=90 \%$
S15. Ans.(d)
Sol.
Total number of students register for all exams
$=25+35+30$
= 90 Lakh
Required number of students
$=90 \times \frac{80}{100} \times \frac{75}{100}=54$ Lakh

Quiz - 26

S1.Ans(a)
Sol. Total 8 GB mobile phones sold by A $=(4000+3000) \times \frac{40}{100}-4000 \times \frac{45}{100}=1000$
Total 8 GB mobile phones sold by B $=(6000+4000) \times \frac{80}{100}-6000 \times \frac{2}{3}=4000$
Required percentage $=\frac{(1000+4000)}{10000} \times 100=50 \%$
S2.Ans(c)
Sol.
Total unsold mobiles by B \& C $=(6000+4000) \times \frac{20}{100}+(5000+4000) \times \frac{40}{100}$
$=2000+3600=5600$
Average $=\frac{5600}{2}=2800$
Total sold mobiles by $C=(5000+4000) \times \frac{60}{100}=5400$
Required difference $=5400-2800=2600$

S3. Ans(d)
Sol.
Total 8GB mobiles sold by $A=(4000+3000) \times \frac{40}{100} \times \frac{2}{7}=800$
Total 8 GB mobiles sold by $\mathrm{C}=(5000+4000) \times \frac{60}{100} \times \frac{4}{9}=2400$
Required sum $=800+2400=3200$
S4. Ans(a)
Sol.
Total unsold mobiles by $\mathrm{A}=(4000+3000) \times \frac{60}{100}=4200$
Total unsold mobiles by B $=(6000+4000) \times \frac{20}{100}=2000$
Required percentage $=\frac{4200-2000}{2000} \times 100=110 \%$
S5. Ans(d)
Sol.
Total sold mobiles by $\mathrm{A}=(4000+3000) \times \frac{40}{100}=2800$
Total sold mobiles by $B=(6000+4000) \times \frac{80}{100}=8000$
Total sold mobiles by $C=(5000+4000) \times \frac{60}{100}=5400$
Required average $=\frac{2800+8000+5400}{3}$
$=\frac{16200}{3}=5400$
S6. Ans(c)
Sol.
Total complains unresolved in police stations $\mathrm{A}=9600 \times \frac{75}{100}=7200$
Total complains unresolved in police stations $C=4800 \times \frac{85}{100}=4080$
Total complains unresolved in police stations $E=8000 \times \frac{60}{100}=4800$
Required average $=\frac{7200+4080+4800}{3}$
$=5360$

S7. Ans(d)
Sol.
Total complain resolved in police station $B=8400 \times \frac{30}{100}=2520$
Total complain resolved in police station A \& D $=9600 \times \frac{25}{100}+6400 \times \frac{1}{8}$
$=2400+800$
$=3200$
Required percentage $=\frac{3200-2520}{3200} \times 100$
$=\frac{680}{3200} \times 100$
$=21.25 \%$

S8. Ans(a)
Sol. Total number of complains resolved in police stations B \& E
$==8400 \times \frac{30}{100}+8000 \times \frac{40}{100}$
$=2520+3200$
$=5720$
Total complains unresolved in police station $C=4800 \times \frac{85}{100}=4080$
Required difference $=5720-4080$
$=1640$
S9. Ans(b)
Sol. Total complains resolved in police stations A \& D $=9600 \times \frac{25}{100}+6400 \times \frac{1}{8}$
$=2400+800$
$=3200$
Total complains unresolved in police station $B=8400 \times \frac{70}{100}=5880$
Required ratio $=\frac{3200}{5880}$
= $80: 147$

S10. Ans(b)
Sol.
Total complains unresolved in police station $B=8400 \times \frac{70}{100}=5880$
Total complains unresolved in police station $E=8000 \times \frac{60}{100}=4800$
Required percentage $=\frac{5880-4800}{4800} \times 100$
$=\frac{1080}{4800} \times 100$
$=22.5 \%$
S11. Ans. (c)
Sol. Number of Activa in A \& B together in $2019=\left(6000 \times \frac{100-50}{100}\right)+\left(4000 \times \frac{100-25}{100}\right)$
$=3000+3000$
$=6000$
Number of Activa in D \& E together in $2018=\left(8000 \times \frac{100-25}{100}\right)+\left(5000 \times \frac{100-20}{100}\right)$
$=6000+4000$
$=10000$
Required $\%=\frac{6000}{10000} \times 100$
= 60\%

S12. Ans. (b)
Sol. Average number of aviators in C, D \& E in $2018=\frac{1}{3} \times\left(\left(6000 \times \frac{30}{100}\right)+\left(8000 \times \frac{25}{100}\right)+\right.$ $\left.\left(5000 \times \frac{20}{100}\right)\right)$
$=\frac{1}{3} \times(1800+2000+1000)$
$=1600$

Average number of aviators in A \& D in $2019=\frac{1}{2} \times\left(\left(6000 \times \frac{50}{100}\right)+\left(10000 \times \frac{20}{100}\right)\right)$
$=\frac{1}{2} \times(3000+2000)$
$=2500$
Required difference $=2500-1600$
$=900$

S13. Ans. (e)
Sol. Number of Activa in A, B \& C together in $2018=\left(\left(3000 \times \frac{100-40}{100}\right)+\left(2000 \times \frac{100-50}{100}\right)+\right.$
$\left.\left(6000 \times \frac{100-30}{100}\right)\right)$
$=1800+1000+4200$
$=7000$

S14. Ans. (d)
Sol. Number of Avaitor in C \& E together in $2019=\left(\left(9000 \times \frac{40}{100}\right)+\left(8000 \times \frac{60}{100}\right)\right)$
$=3600+4800$
$=8400$
Number of Activa in D \& E together in $2019=\left(\left(10000 \times \frac{100-20}{100}\right)+\left(8000 \times \frac{100-60}{100}\right)\right)$
$=8000+3200$
$=11200$
Required $\%=\frac{11200-8400}{11200} \times 100$
= 25%

S15. Ans. (a)
Sol. Required number of Avaitor $=\left(3000 \times \frac{40}{100}\right)+\left(2000 \times \frac{50}{100}\right)$
$=1200+1000$
$=2200$

Quiz - 27

Sol. (1-5):
Let total players in Asia = a
And, total players in Europe $=b$
Total players in Crown in Asia $=a \times \frac{75}{4} \times \frac{1}{100}=\frac{3 a}{16}$
Total players in Gold in Europe $=b \times \frac{200}{7} \times \frac{1}{100}=\frac{2 b}{7}$
Given, $\frac{3 a}{16}+\frac{2 b}{7}=210$
And $a+b=900$
So, from (i) and (ii),
Total players in Asia $=480$
And total players in Europe $=420$

Total playersin Crown in Europe $=\frac{400}{21} \times \frac{1}{100} \times 420=80$
Total players in Platinum in Asia $=\frac{1}{2} \times 480=240$
Now, total players in Gold in Asia $=480-\frac{3}{16} \times 480-240=150$
And total players in Platinum in Europe $=420-\frac{2}{7} \times 420-80=220$

Levels	Asia	Europe
Platinum	240	220
Crown	90	80
Gold	150	120
Total	$\mathbf{4 8 0}$	$\mathbf{4 2 0}$

S1. Ans(d)
Sol.
Required percentage $=\frac{240-120}{120} \times 100$
= 100\%

S2. Ans(a)
Sol.
Required ratio $=\frac{80}{150}$
= $8: 15$

S3. Ans(e)
Sol.
Total players in Platinum \& Crown in 'Middle east' $=360-80 \times \frac{125}{100}=260$
Required difference $=(240+90)-260=70$
S4. Ans(b)
Sol
Required average $=\frac{150+120}{2}$
$=\frac{270}{2}=135$
S5. Ans(c)
Sol. boys in platinum from both servers $=240 \times \frac{5}{8}+220 \times \frac{7}{11}$
$=150+140$
$=290$

Sol (6-10):

Let amount invested by A be Rs.100x.
So, amount invested by $B=\frac{150}{100} \times 100 x=$ Rs. 150 x
And, amount invested by $\mathrm{D}=100 x \times \frac{100}{80}=$ Rs. 125 x
Now, amount invested by $C=\frac{40}{100} \times 125 x$
= Rs.50x
And, amount invested by E $=50 x \times \frac{4}{1}$
= Rs.200x
ATQ,
$\frac{100 x+200 x}{2}=30,000$
$x=200$

Person	Amount invested (in Rs.)
A	20,000
B	30,000
C	10,000
D	25,000
E	40,000

S6. Ans. (b)
Sol. Required amount $=30,000+10,000$
= Rs.40,000

S7. Ans. (c)
Sol. Required average $=\frac{10,000+25,000+40,000}{3}$
= Rs.25,000

S8. Ans. (a)
Sol. Required interest $=\frac{\left(\frac{60}{100} \times 25,000\right) \times 12 \times 2}{100}$
= Rs.3,600

S9. Ans. (e)
Sol. Required ratio $=\frac{20,000+30,000}{10,000+40,000}$
= $1: 1$

S10. Ans. (b)
Sol. Required amount $=30,000 \times\left(1+\frac{20}{100}\right)^{2}$
= Rs.43,200

Sol.(11-15)

Let the total work $=108$ unit $(\mathrm{LCM}$ of $36 \& 54)$
So, the efficiency of Veer $=\frac{108}{36}=3$ unit $/$ day
The efficiency of Ayush $=\frac{108}{54}=2$ unit $/$ day
Now, the efficiency of Shivam $=3 \times \frac{100-50}{100}=1.5$ unit/day
So, time taken by shivam to complete same work alone $=\frac{108}{1.5}=72$ days
So, time taken by Anurag to complete same work alone $=72-45=27$ days.
Efficiency of Anurag $=\frac{108}{27}=4$ unit $/$ day

S11. Ans. (b)
Sol. Required days $=72$ days.
S12. Ans. (d)
Sol.
Required days $=\frac{108}{(4+2)}=18$ days.

S13. Ans. (b)
Sol.
Required ratio $=3: 4$
S14. Ans. (e)
Sol.
We know wage are given in the ratio of their efficiency.
So, wage share of Anurag $=21000 \times \frac{4}{3+2+1.5+4}=$ Rs. 8000

S15. Ans. (b)
Sol.
Efficiency of Deepak $=\frac{75}{100} \times 4=3$ unit $/$ day
Required days $=\frac{2 \times 108}{3}=72$ days.

$$
\text { Quiz - } 28
$$

S1. Ans (c)
Sol. required ratio $=\frac{7500}{5000 \times \frac{50}{100}}=\frac{7500}{2500}$
$=3: 1$
S2. Ans (d)
Sol. average of passed students from school A and C $=\frac{6000 \times \frac{70}{100}+8000 \times \frac{60}{100}}{2}$
$=\frac{4200+4800}{2}=4500$
So, required difference $=7500-4500=3000$

S3. Ans (b)
Sol. required percentage $=\frac{8000 \times \frac{40}{100}}{6000 \times \frac{80}{100}} \times 100=\frac{3200}{4800} \times 100$
$=\frac{200}{3} \%=66 \frac{2}{3} \%$
S4. Ans (a)
Sol. From graph it is clearly visible that the maximum no. of students passed in school B
i.e., $7500 \times \frac{90}{100}=6750$

S5. Ans (e)
Sol. required average $=\frac{6000 \times \frac{70}{100}+8000 \times \frac{60}{100}+6000 \times \frac{80}{100}}{3}=\frac{4200+4800+4800}{3}$
$=\frac{13800}{3}=4600$
S6. Ans(b)
Sol.
Let total labor working in $2013=100 x$
Total child labor working in $2013=28 x$
ATQ -
$28 x \times\left(\frac{4}{7}-\frac{3}{7}\right)=48$
$4 x=48$
$\mathrm{x}=12$
Required difference $=1200 \times\left(\frac{40}{100}-\frac{32}{100}\right)=96$
S7. Ans(e)
Sol.
Let total labors working in $2011=500 y$
So, total labors working in $2015=600 y$
Total female labor working in $2015=600 \mathrm{y} \times \frac{24}{100}=144 y$
Total child labors working in $2011=500 \mathrm{y} \times \frac{20}{100}=100 y$
Required percentage $=\frac{144 y-100 y}{100 y} \times 100$
$=44 \%$
S8.Ans(c)
Sol. Let total labors working in $2011=x$
And, total labors working in $2012=y$
Total male labors working in $2011=0.5 x$
And, total male labors working in $2012=0.48 \mathrm{y}$
ATQ -
$\frac{0.5 x}{0.48 y}=\frac{5}{4}$
$x: y=6: 5$
so, $\mathrm{y}=\frac{5 x}{6}$

ATQ -
$x+\frac{5 x}{6}=2200$
$x=1200$
$y=1000$
Total child labors working in $2011 \& 2012$ together $=1200 \times \frac{20}{100}+1000 \times \frac{20}{100}=440$
S9.Ans(c)
Sol.
Total child labor working in $2014=\frac{2000}{25}=80$
Total male labors working in $2014=80 \times \frac{60}{10}=480$
Total child labor working in 2015 $=80+220=300$
Total male labors working in $2015=300 \times \frac{56}{20}=840$
Required ratio $=\frac{480}{840}=4: 7$
S10. Ans(e)
Sol.
Let total labors working in 2011, 2012 and 2013 be 80a, 100a \& 50a respectively
Total female labors working in $2011=80 a \times \frac{30}{100}=24 a$
Total female labors working in $2012=100 \mathrm{a} \times \frac{32}{100}=32 a$
Total female labors working in $2013=50 a \times \frac{32}{100}=16 a$
ATQ -
$24 a+32 a+16 a=720$
$72 \mathrm{a}=720$
$\mathrm{a}=10$
Total number of child labors working in 2011, 2012 and 2013
$=800 \times \frac{20}{100}+1000 \times \frac{20}{100}+500 \times \frac{28}{100}$
$=160+200+140$
$=500$

S11. Ans(a)
Sol. Incentive given to HR department $=\frac{35}{100} \times 50000=$ Rs 17500
Incentive to each employee in $\mathrm{HR}=\frac{17500}{60}=R s 291.67$
S12. Ans(c)
Sol. required ratio $=\frac{\frac{15}{100} \times 50000}{80}: \frac{\frac{20}{100} \times 50000}{60}=9: 16$
S13. Ans(b)
Sol. required average $=\frac{10+20+20}{100} \times \frac{50000}{3}=8333.33$

S14. Ans(e)
Sol. per employee incentive in Content department $=\frac{10}{100} \times \frac{50000}{150}=$ Rs 33.33
Per employee incentive given in HR department $=\frac{35}{100} \times \frac{50000}{60}=$ Rs 291.67
Required $\%=\frac{291.67-33.33}{291.67} \times 100=88.57 \% \approx 89 \%$

S15. Ans(b)
Sol. per employee incentive
$\mathrm{HR}=\frac{35}{100} \times \frac{50000}{60}=$ Rs 291.67
Content $=\frac{10}{100} \times \frac{50000}{150}=$ Rs 33.33
Blogging $=\frac{\frac{15}{100} \times 50000}{80}=$ Rs 93.75
$\mathrm{SEO}=\frac{20}{100} \times \frac{50000}{60}=R s 166.67$
$\mathrm{DTP}=\frac{20}{100} \times \frac{50000}{70}=R s 142.86$
Per employee incentive given is maximum for HR department employees

Quiz - 29

S1. Ans(d)
Sol. required answer $=1000 \times\left(\frac{10}{100} \times \frac{3}{5}+\frac{15}{100} \times \frac{8}{15}\right)=140$
S2. Ans(c)
Sol. required ratio $=\left(\frac{20}{100} \times 1000 \times \frac{1}{2}\right)+\left(\frac{25}{100} \times 1000 \times \frac{13}{25}\right):\left(\frac{30}{100} \times 1000 \times \frac{13}{30}\right)$
$=23: 13$

S3. Ans(a)
Sol. duffel bags produced by company B $=\frac{10}{100} \times 1000 \times \frac{3}{5}=60$
Backpacks produced by company $D=\frac{25}{100} \times 1000 \times \frac{13}{25}=130$
Required $\%=\frac{60}{130} \times 100=46 \frac{2}{13} \%$

S4. Ans(e)
Sol. required average $=\frac{\frac{15}{100} \times 1000 \times \frac{7}{15}+\frac{25}{100} \times 1000 \times \frac{13}{25}}{2}=\frac{200}{2}=100$
S5. Ans(b)
Sol. bags produced by company B \& E together $=\frac{10+30}{100} \times 1000=400$
Duffel bags produced by company A, D \& E together $=\frac{20}{100} \times 1000 \times \frac{1}{2}+\frac{25}{100} \times 1000 \times \frac{12}{25}+$ $\frac{30}{100} \times 1000 \times \frac{13}{30}=350$
Required $\%=\frac{400}{350} \times 100=114 \frac{2}{7} \%$

S6. Ans(c)
Sol.
Total number of males employees in company $E=5400 \times \frac{22}{100} \times \frac{2}{3}=792$
Total number of female employees in company $D=5400 \times \frac{20}{100} \times \frac{3}{5}=648$
Required ratio $=\frac{792}{648}=11: 9$
S7. Ans(a)
Sol. Total number of male employees in company A=5400× $\frac{18}{100} \times \frac{2}{3}=648$
Total number of female employees in company $E=5400 \times \frac{22}{100} \times \frac{1}{3}=396$
Required percentage $=\frac{648}{396} \times 100=163.63 \%$
=164\% (approx.)

S8. Ans(b)
Sol. total male employees in company B,C and D together $=5400 \times \frac{28}{100} \times \frac{3}{4}+5400 \times \frac{12}{100} \times \frac{1}{3}+5400 \times \frac{20}{100} \times$
$\frac{2}{5}=1134+216+432$
$=1782$
Required percentage $=\frac{1782}{5400} \times 100=33 \%$
S9. Ans(d)
Sol.
Total female employees in all the 5 companies together
$=5400 \times \frac{18}{100} \times \frac{1}{3}+5400 \times \frac{28}{100} \times \frac{1}{4}+5400 \times \frac{12}{100} \times \frac{2}{3}+5400 \times \frac{20}{100} \times \frac{3}{5}+5400 \times \frac{22}{100} \times \frac{1}{3}$
$=324+378+432+648+396$
$=2178$

S10. Ans(e)
Sol.
Central angle of total employees from company B and D together $=(28+20) \times \frac{360}{100}$ $=172.8^{\circ}$

S (11-15):

Let the number of students in class IX be x
Number of boys in class VIII $=0.5 \mathrm{x}$
Number of boys in class IX=0.4x
Number of girls in class IX $=0.6 x$
Number of boys in class VI= $(0.6 \mathrm{x}+10)=$ Number of girls in class VIII
Number of girls in class VII $=(0.6 x+10) \times \frac{6}{5}=(0.72 x+12)$
Number of boys in class VII $=(0.6 x+10) \times 0.8=(0.48 x+8)$
Number of girls in class VI $=(0.48 x+8) \times 1.75=(0.84 x+14)$

ATQ
$x=0.75 \times(0.72 x+12+0.48 x+8)$
$0.1 x=15$
$x=150$

Class	Students	Girls	Boys
VI	240	140	100
VII	200	120	80
VIII	175	100	75
IX	150	90	60

S11. Ans(c)
Sol.
Required \% $=\frac{50}{100} \times 100=50 \%$

S12. Ans(b)
Sol.
Required difference $=(140+120+100+90)-(240+200)=10$

S13. Ans(e)
Sol.
Required average $=\frac{240+200+175}{3}=205$

S14. Ans(a)
Sol.
Total number of girls in all the given classes $=450$
Total number of boys in all the given classes $=315$
Required percent $=\frac{135}{450} \times 100=30 \%$

S15. Ans(a)
Sol.
Required percent $=\frac{315}{765} \times 100 \approx 41 \%$

$$
\text { Quiz - } 30
$$

S1. Ans(a)
Sol.
Let total income $=100 x$
ATQ -
$100 \mathrm{x} \times\left(\frac{25}{100} \times \frac{20}{100}+\frac{30}{100} \times \frac{40}{100}\right)=40800$
$17 x=40800$
$\mathrm{x}=2400$
Income of $C=240000 \times \frac{30}{100}=72000 R s$.

S2. Ans(b)
Sol. Let total income in $2016=100 \mathrm{n}$
Total income of B \& D in the year 2016 = 100n $\times\left(\frac{35}{100}+\frac{10}{100}\right)=45 n$
Total income of B \& D in the year $2017=100 \mathrm{n} \times\left(\frac{35}{100} \times \frac{120}{100}+\frac{10}{100} \times \frac{140}{100}\right)=56 \mathrm{n}$
Required ratio $=\frac{45 n}{56 n}=45: 56$

S3. Ans(d)
Sol. Let total income $=100 b$
And total expenditure of each A \& B be ' E^{\prime}
ATQ -
Required percent $=\frac{(35 b-E)-(25 b-E)}{10 b} \times 100$
$=\frac{10 b}{10 b} \times 100=100 \%$

S4. Ans(b)
Sol. Let total income $=100 x$
ATQ -
$25 x-10 x=30000$
$\mathrm{x}=2000$
Required difference $=200000\left(\frac{35}{100} \times \frac{140}{100}-\frac{30}{100} \times \frac{120}{100}\right)=26000 \mathrm{Rs}$.
S5. Ans(c)
Sol. Let total income $=100 x$
Total income of A \& D $=35 x$
Required angle $=\frac{35 x}{100 x} \times 360=126^{\circ}$
S6. Ans(a)
Sol.
Books printed by publisher B in year 2015 and $2016=7500 \times \frac{60}{100}+9000 \times \frac{55}{100}$ $=4500+4950=9450$
Total books printed by publisher A in year $2013=6000 \times \frac{60}{100}=3600$
Required percentage $=\frac{9450-3600}{3600} \times 100$
$=162.5 \%$

S7. Ans(d)
Sol.
Books printed by publisher A in year 2013, 2015 and 2016
$=6000 \times \frac{60}{100}+7500 \times \frac{40}{100}+9000 \times \frac{45}{100}$
$=3600+3000+4050$
$=10650$
Required average $=\frac{10650}{3}=3550$

S8. Ans(c)
Sol.
Total books printed by A in the year $2018=8000 \times \frac{1}{2}=4000$
Books printed by B in the year 2018 $=4000 \times \frac{3}{5}=2400$
Books printed by A in the year $2015=7500 \times \frac{40}{100}=3000$
Required difference $=3000-2400=600$
S9. Ans(e)
Sol.
Cost of one book printed in 2016 by publisher $\mathrm{A}=350 \times \frac{4}{5}=280 \mathrm{Rs}$.
Total cost price of all the books which is sold by publisher A in 2016 $=9000 \times \frac{45}{100} \times 280$
$=11,34,000$ Rs.
S10. Ans(d)
Sol.
Total books printed by publisher A in 2014 and $2017=8000 \times \frac{25}{100}+5000 \times \frac{35}{100}$
$=2000+1750=3750$
Total books printed by publisher B in the year 2016= $9000 \times \frac{55}{100}=4950$
Required ratio $=\frac{3750}{4950}=25: 33$
S1. Ans.(d)
Sol. Number of male employees in company -A and C together $=45000 \times \frac{60}{100}+60000 \times \frac{50}{100}$
$=27000+30000$
$=57000$
Required \% $=\frac{57000-30000}{30000} \times 100=90 \%$
S12. Ans.(b)
Sol. Female employees of company $-A$ and B together $=45000 \times \frac{40}{100}+30000 \times \frac{45}{100}$
$=18000+13500=31500$
Male employees of company -B and D together $=30000 \times \frac{55}{100}+50000 \times \frac{45}{100}$
$=16500+22500=39000$
Required ratio $=\frac{31500}{39000}=\frac{21}{26}=21: 26$
S13. Ans.(d)
Sol. Male employees of company $-\mathrm{E}=40000 \times \frac{65}{100}=26000$
Total female employees in company A, B and C $=45000 \times \frac{40}{100}+30000 \times \frac{45}{100}+60000 \times \frac{50}{100}$
$=18000+13500+30000=61500$
Required difference $=26000-\frac{61500}{3}=26000-20500=5500$

S14. Ans.(a)
Sol. Male employees of company -F $=45000 \times \frac{60}{100} \times \frac{130}{100}=35100$
Female employees of company -F $=40000 \times \frac{35}{100} \times \frac{200}{100}=28000$
Total employees of company $-\mathrm{F}=28000+35100=63100$
Required difference $=63100-50000=13100$
S15. Ans.(c)
Sol. Male employees of company $-B=30000 \times \frac{55}{100}=16500$
Total female employees of company -A and $\mathrm{C}=45000 \times \frac{40}{100}+60000 \times \frac{50}{100}$ $=18000+30000=48000$
Required $\%=\frac{48000+16500}{40000+50000} \times 100=\frac{64500}{900} \%=71 \frac{2}{3} \%$
Quiz - 31
S1. Ans. (b)
Sol. $\frac{?}{100} \times 350-361+1260=1032$
$\frac{?}{100} \times 350=1032-899$
$?=38$

S2. Ans. (a)
Sol. $(?)^{2}=39+420+217$
$(?)^{2}=676$
$?=26$

S3. Ans. (d)
Sol. $\frac{46}{100} \times 1500+\frac{36}{100} \times 750=?+420$
$?=690+270-420$
$?=540$
S4. Ans. (d)
Sol. ? $\times 13=\frac{161}{6} \times \frac{156}{23}$
$?=\frac{182}{13}$
$?=14$

S5. Ans. (c)
Sol. $\frac{?+26}{100} \times 1200=500-20$
$?+26=\frac{480}{12}$
? $=14$
S6. Ans. (d)
Sol. $\frac{640}{?}=(3375-2700) \times \frac{1}{33.75}$
$\frac{640}{?}=20$
$?=32$

S7. Ans. (b)
Sol. $?^{2}=\frac{85}{100} \times 280+34-224+96$
$?^{2}=144$
$?=12$

S8. Ans. (b)
Sol. $39+441-90=5 \times$?
$5 \times ?=390$
$?=78$

S9. Ans. (a)
Sol. (? $)^{2}=\frac{48}{100} \times 800+\frac{125}{100} \times 1200-120$
$(?)^{2}=384+1500-120$
$(?)^{2}=1764$
$?=42$
S10. Ans. (b)
Sol. $\frac{?}{100} \times 700=1166-18$
$?=\frac{1148}{7}$
$?=164$

S11. Ans(d)
Sol. $\frac{40}{100} \times 285+\frac{60}{100} \times 175 \approx ? \times 73$
$114+105 \approx 73 \times$?
? ≈ 3

S12. Ans(e)
Sol. $379-\frac{20}{100} \times 770 \approx(?+6)^{2}$
$379-154 \approx(?+6)^{2}$
$225 \approx(?+6)^{2}$
? ≈ 9

S13. Ans(b)
Sol. $(223+227) \div 9 \approx ? \times 10$
$50 \approx ? \times 10$
$? \approx 5$

S14. Ans(a)
Sol. $\sqrt{1444}-\sqrt{841} \approx \sqrt{?}-\sqrt{324}$
$38-29 \approx \sqrt{?}-18$
$\sqrt{?} \approx 27$
? ≈ 729

S15. Ans(e)
Sol. $10 \times 100 \times 1000 \approx 10000 \times$?
? ≈ 100

Quiz - 32

S1. Ans(d)
Sol. Here the pattern is:
$9^{3}-1=728$
$8^{3}+1=513$
$7^{3}-1=342$
$6^{3}+1=217$
$5^{3}-1=124$
? $=4^{3}+1=65$
S2. Ans(e)
Sol. Here the pattern is:
$26 \times 2=52$
$52 \times 3=156$
$156 \times 4=624$
? $=624 \times 5=3120$
$3120 \times 6=18720$
S3. Ans(c)
Sol. Here the pattern is:
$1+1=2$
$2+3=5$
$5+5=10$
$10+7=17$
? $=17+9=26$
S4. Ans(a)
Sol. Here the pattern is:
$137-13=124$
$124-15=109$
$109-17=92$
$92-19=73$
? $=73-21=52$
S5. Ans(e)
Sol.
Pattern of series -
$16 \times 5+5=85$
$85 \times 4+4=344$
? $=344 \times 3+3=\mathbf{1 0 3 5}$
$1035 \times 2+2=2072$
$2072 \times 1+1=2073$

S6. Ans(a)
Sol.
Wrong number $=104$
Pattern of series -
$12+27=39$
$39+24=63$
$63+27=90$
$90+24=114$
$114+27=141$
$141+24=165$
So, 114 should come in the place of 104
S7. Ans(d)
Sol.
Wrong number $=562$
$13+3^{3}=40$
$40+4^{2}=56$
$56+5^{3}=181$
$181+6^{2}=217$
$217+7^{3}=560$
$560+8^{2}=624$
So, 560 should come in the place of 562 .
S8. Ans(c)
Sol.
Wrong number $=134$
Pattern of series -
$112+16=128$
$128-20=108$
$108+24=132$
$132-28=104$
$104+32=136$
$136-36=100$
So, should be 136 come in the place of 134 .
S9. Ans(d)
Sol.
Wrong number $=255$
Pattern of series -
$120=11^{2}-1$
$145=12^{2}+1$
$168=13^{2}-1$
$197=14^{2}+1$
$224=15^{2}-1$
$16^{2}+1=257$
$288=17^{2}-1$
So, should be 257 come in the place of 255 .

S10. Ans(d)
Sol.
Wrong number $=920$
Pattern of series -
$5 \times 1+1=6$
$6 \times 2+2=14$
$14 \times 3+3=45$
$45 \times 4+4=184$
$184 \times 5+5=925$
$925 \times 6+6=5556$
So, 925 should come in the place of 920 .

S11. Ans(b)
Sol. Here the pattern is:
$111+96=207$
$207+95=302$
$302+94=396$
$396+93=489$
? $=489+92=581$

S12. Ans(d)
Sol. Here the patten is:
$10^{2}+1=101$
$92+1=82$
$8^{2}+1=65$
$7^{2}+1=50$
$6^{2}+1=37$
$5^{2}+1=26$
Or -
$101-19=82$
$82-17=65$
$65-15=50$
$50-13=37$
? $=37-11=26$

S13. Ans(e)
Sol. Here the pattern is:
$40 \times 1.5=60$
$60 \times 2=120$
$120 \times 2.5=300$
$300 \times 3=900$
? $=900 \times 3.5=3150$

S14. Ans(a)
Sol. Here the pattern is:
$1012-67=945$
$945-67=878$
$878-67=811$
$811-67=744$
? $=744-67=677$
S15. Ans(b)
Sol. Here the pattern is:
$13122 \div 3=4374$
$4374 \div 3=1458$
$1458 \div 3=486$
$486 \div 3=162$
? $=162 \div 3=54$

Quiz - 33

S1. Ans(e)
Sol.
I. $x^{2}+4 x+5 x+20=0$
$x(x+4)+5(x+4)=0$
$(x+4)(x+5)=0$
$x=-4,-5$
II. $y^{2}+5 y+7 y+35=0$
$y(y+5)+7(y+5)=0$
$(y+5)(y+7)=0$
$y=-5,-7$
So, $x \geq y$
S2. Ans(c)
Sol.
I. $x=+8$
II. $y= \pm 8$

So, $x \geq y$
S3. Ans(b)
Sol.
I. $x^{2}-12 x-9 x+108=0$
$\mathrm{x}(\mathrm{x}-12)-9(x-12)=0$
$(x-12)(x-9)=0$
$\mathrm{x}=12,9$
II. $\mathrm{y}^{2}-13 y-12 y+156=0$
$\mathrm{y}(\mathrm{y}-13)-12(y-13)=0$
$(y-13)(y-12)=0$
$y=13,12$
So, $x \leq y$

S4. Ans(e)
Sol.
I. $x^{2}+13 x+6 x+78=0$
$x(x+13)+6(x+13)=0$
$(x+13)(x+6)=0$
$x=-13,-6$
II. $y^{2}+13 y+8 y+104=0$
$y(y+13)+8(y+13)=0$
$(y+13)(y+8)=0$
$y=-13,-8$
No relation can be established between x and y .

Bank Prime Test Pack

S5. Ans(e)
Sol.
I. $x= \pm 15$
II. $y=14$

So, no relation can be established between x and y.

S6. Ans(e)
Sol. I. $x^{2}-21 x+98=0$
$x^{2}-14 x-7 x+98=0$
$x(x-14)-7(x-14)=0$
$x=7,14$
II. $y^{2}-22 y+85=0$
$y^{2}-17 y-5 y+85=0$
$y(y-17)-5(y-17)=0$
$y=5,17$
So, no relation
S7. Ans(e)
Sol. I. $x^{2}+16 x+39=0$
$x^{2}+13 x+3 x+39=0$
$x(x+13)+3(x+13)=0$
$x=-3,-13$
II. $\mathrm{y}^{2}+24 y+108=0$
$\mathrm{y}^{2}+18 y+6 y+108=0$
$y(y+18)+6(y+18)=0$
$y=-6,-18$
So, no relation.
S8. Ans(c)
Sol. I. $x^{2}+5 x-14=0$
$x^{2}+7 x-2 x-14=0$
$x(x+7)-2(x+7)=0$
$x=2,-7$
II. $\mathrm{y}^{2}-15 y+56=0$
$\mathrm{y}^{2}-8 y-7 y+56=0$
$\mathrm{y}(\mathrm{y}-8)-7(\mathrm{y}-8)=0$
$y=7,8$
So, $y>x$

S9. Ans (e)
Sol. I. $x^{2}+20 x-96=0$
$x^{2}+24 x-4 x-96=0$
$x(x+24)-4(x+24)=0$
$x=4,-24$
II. $\mathrm{y}^{2}+7 y-78=0$
$\mathrm{y}^{2}+13 y-6 y-78=0$
$y(y+13)-6(y+13)=0$
$y=6,-13$
So, no relation

S10. Ans(d)
Sol. I. $x^{2}+50 x+625=0$
$x^{2}+25 x+25 x+625=0$
$x(x+25)+25(x+25)=0$
$x=-25$
II. $\mathrm{y}^{2}+45 y+500=0$
$\mathrm{y}^{2}+20 y+25 y+500=0$
$\mathrm{y}(\mathrm{y}+20)+25(\mathrm{y}+20)=0$
$y=-20,-25$
So, $x \leq y$

S11. Ans(e)
Sol. I. $x^{2}+10 x+21=0$
$x^{2}+7 x+3 x+21=0$
$x(x+7)+3(x+7)=0$
$x=-3,-7$
II. $\mathrm{y}^{2}+11 \mathrm{y}+28=0$
$y^{2}+4 y+7 y+28=0$
$y(y+4)+7(y+4)=0$
$y=-7,-4$
So, no relation.

S12. Ans(e)

Sol. I. $2 x^{2}-19 x+44=0$
$2 x^{2}-11 x-8 x+44=0$
$x(2 x-11)-4(2 x-11)=0$
$x=4, \frac{11}{2}$
II. $y^{2}-14 y+45=0$
$y^{2}-9 y-5 y+45=0$
$y(y-9)-5(y-9)=0$
$y=5,9$
So, no relation can be established

S13. Ans(a)
Sol. I. $x^{2}-22 x+85=0$
$x^{2}-17 x-5 x+85=0$
$x(x-17)-5(x-17)=0$
$x=5,17$
II. $5 y^{2}-11 y+6=0$
$5 y^{2}-5 y-6 y+6=0$
$5 y(y-1)-6(y-1)=0$
$y=1, \frac{6}{5}$
So, $x>y$

S14. Ans(b)
Sol. I. $x^{2}=\sqrt{256}$
$x^{2}=16$
$x=+4,-4$
II. $(y+4)^{2}=0$
$y=-4$
So, $x \geq y$

S15. Ans(d)
Sol. I. $x^{2}+18 x+72=0$
$x^{2}+12 x+6 x+72=0$
$x(x+12)+6(x+12)=0$
$x=-6,-12$
II. $y^{2}+12 y+36=0$
$y^{2}+6 y+6 y+36=0$
$y(y+6)+6(y+6)=0$
$y=-6$
So, $x \leq y$

S1. Ans. (e)
Sol. I. $x^{2}+6 x+5=0$
$x^{2}+x+5 x+5=0$
$x(x+1)+5(x+1)=0$
$(x+1)(x+5)=0$
$x=-1,-5$
II. $y^{2}+6 y+8=0$
$y^{2}+4 y+2 y+8=0$
$y(y+4)+2(y+4)=0$
$(y+2)(y+4)=0$
$y=-2,-4$
So, no relation.
S2. Ans. (d)
Sol. I. $x^{2}-9 x+14=0$
$x^{2}-7 x-2 x+14=0$
$x(x-7)-2(x-7)=0$
$(x-2)(x-7)=0$
$x=2,7$
II. $y^{2}-16 y+63=0$
$y^{2}-9 y-7 y+63=0$
$y(y-9)-7(y-9)=0$
$(y-7)(y-9)=0$
$y=7,9$
So, $x \leq y$.
S3. Ans. (c)
Sol. I. $2 x^{2}-17 x+35=0$
$2 x^{2}-7 x-10 x+35=0$
$x(2 x-7)-5(2 x-7)=0$
$(2 x-7)(x-5)=0$
$x=\frac{7}{2}, 5$
II. $(y+7)^{3}=2197$
$(y+7)=13$
$y=6$
So, $x<y$.
S4. Ans. (d)
Sol. I. $(x+16)^{2}=529$
$x+16= \pm 23$
$x+16=23 \quad x+16=-23$ $x=7$ $x=-39$
II. $y^{3}=343$
$y=7$
So, $x \leq y$.

S5. Ans. (a)
Sol. I. $x^{2}-10 x+21=0$
$x^{2}-7 x-3 x+21=0$
$x(x-7)-3(x-7)=0$
$(x-3)(x-7)=0$
$x=3,7$
II. $6 y^{2}-23 y+20=0$
$6 y^{2}-8 y-15 y+20=0$
$2 y(3 y-4)-5(3 y-4)=0$
$(2 y-5)(3 y-4)=0$
$y=\frac{5}{2}, \frac{4}{3}$
So, $x>y$.
S6. Ans. (a)
Sol. Missing number $=132$
Pattern of series -
$8+4=12$
$12+8=20$
$20+16=36$
$36+32=68$
? $=68+64=132$
S7. Ans. (d)
Sol. Missing number $=2$
Pattern of series -
$0.25 \times 2=0.5$
? $=0.5 \times 4=2$
$2 \times 6=12$
$12 \times 8=96$
$96 \times 10=960$
S8. Ans. (b)
Sol. Missing number $=124$
Pattern of series -
$124+(40 \times 1)=164$
$164+(40 \times 3)=284$
$284+(40 \times 5)=484$
$484+(40 \times 7)=764$
$764+(40 \times 9)=1124$
S9. Ans. (c)
Sol. Missing number $=734$
Pattern of series -
$1600-8^{3}=1088$
$1088-7^{2}=1039$
$1039-6^{3}=823$
$823-5^{2}=798$
$798-4^{3}=734$

S10. Ans. (a)
Sol. Missing number $=124$
Pattern of series -
$12^{2}+3=147$
$11^{2}+3=124$
$10^{2}+3=103$
$9^{2}+3=84$
$8^{2}+3=67$
$7^{2}+3=52$
Or
$147-23=124$
$124-21=103$
$103-19=84$
$84-17=67$
$67-15=52$

S11. Ans. (e)
Sol. $324+484=?+512$
? $=808-512$
$?=296$

S12. Ans. (e)
Sol. $\frac{?}{100} \times 800=\frac{30}{100} \times 100+\frac{20}{100} \times 650$
$? \times 8=30+130$
$?=\frac{160}{8}$
$?=20$

S13. Ans. (b)
Sol. $?=1072-628$
$?=444$

S14. Ans. (a)
Sol. ? $-256=130$
$?=386$

S15. Ans. (b)
Sol. $?=\frac{37}{8}+\frac{3}{2}-\frac{8}{3}$
$?=\frac{111+36-64}{24}$
$?=\frac{83}{24}$
$?=3 \frac{11}{24}$

S1. Ans.(d)
Sol. $\frac{40}{100} y-\frac{20}{100} x=270$
$\Rightarrow 2 y-x=1350 \ldots$ (i)
and $\frac{40}{100} x-\frac{20}{100} y=0$
$2 x-y=0 \ldots$ (ii)
On solving (i) \& (ii)
$x=450$
$y=900$
Required sum $=1350$
S2. Ans.(b)
Sol. Let 200 promised to P \& 300 to Q
After they went back from promise
P got
$=200-200 \times \frac{25}{100}+300 \times \frac{30}{100}$
$=240$ votes
Q got $=300-300 \times \frac{30}{100}+50$
$=260$ votes
Q wins by 20 unit which is equal to 400 votes
$\therefore 1$ unit $=\frac{400}{20}=20$
And total votes $=20 \times 500$
$=10000$ votes
S3. Ans.(c)
Sol.
Let present age of Veer $=7 x$
And present age of Rohit $=5 x$
Present age of Arun $=5 x+10$
ATQ,
$\frac{7 \mathrm{x}-10}{5 \mathrm{x}}=\frac{16}{15}$
$\Rightarrow 105 \mathrm{x}-150=80 \mathrm{x}$
x $=6$
Hence present age of Rohit $=5 \times 6=30$ years
S4. Ans.(e)
Sol.
Let age of Abhi and Rahul seven years ago be $5 x$ and $3 x$ respectively.
ATQ,
$\frac{5 x+15}{3 x+15}=\frac{3}{2}$
$\mathrm{x}=15$
Present age of Sati
$=\frac{15 \times 8+14}{2}=67$ years.

S5. Ans.(b)
Sol. Let present age of Mohan $=x$
So, ATQ
$\frac{5}{6} \times x=x-5$
$\mathrm{x}=30$
His wife's age $=30-3=27$
S6. Ans.(c)
Sol.
Let Rahul's age $-x$ years.
Then, Aman's age $-2 x$ years
Arun's age $-x-5$
ATQ,
$2 x+x+x-5=79$
$x=2$ years
Required difference $=2 x-(x-5)=26$ years
S7. Ans.(e)
Sol. $\because a, b, c$ and d are four consecutive numbers and $a+c=120$
$\therefore a+a+4=120$
$\Rightarrow 2 \mathrm{a}=116 \Rightarrow \mathrm{a}=58$
$\therefore \mathrm{b}=60$ and $\mathrm{d}=64$
$\therefore \mathrm{b} \times \mathrm{d}=60 \times 64=3840$

S8. Ans.(d)
Sol. Let the numbers be a, b, and c respectively.
$\therefore \frac{a+c}{2}-\frac{b+c}{2}=24$
$\Rightarrow(\mathrm{a}+\mathrm{c})-(\mathrm{b}+\mathrm{c})=24 \times 2=48$
$\Rightarrow \mathrm{a}-\mathrm{b}=48$

S9 Ans.(e)
Sol.
Let two-digit number $=10 x+y$
According to question
$\mathrm{x}+\mathrm{y}=12$..(i)
and $|x-y|=6 \Rightarrow x-y= \pm 6$..(ii)
By solving equation (i) and (ii)
$x=9$ or $x=3$
$y=3$ or $y=9$
\therefore Required two-digit number
$=10 \mathrm{x}+\mathrm{y}=10 \times 9+3$ Or $10 \mathrm{x}+\mathrm{y}=10 \times 3+9$
$=90+3=93$ or $30+9=39$
$93 \& 39$ both can be the answers
So, Either (a) or (c)

S10. Ans.(d)

Sol. Sum of present age of couple $=2 \times 29=58$
Age of family after 8 years
$=58+8 \times 2+(8-2)+(8-4)$
$=58+16+6+4$
$=84$
Required average $=\frac{84}{4}=21$
S11. Ans.(d)
Sol. Second no. $=\frac{100 \times 12}{100}=12$
\therefore first no. $=12^{3} \times \frac{3}{2}=1728 \times \frac{3}{2}$
$=2592$
\therefore Required sum $=12+2592=2604$
S12. Ans.(e)
Sol. Let present age of Bhagat \& Abhi be $9 x$ and $8 x$ respectively
After 10 years.
$\frac{9 x+10}{8 x+10}=\frac{10}{9}$
$81 x+90=80 x+100$
$\mathrm{x}=10$
\therefore required difference $=10$ years.
S13. Ans.(d)
Sol.

7 unit $\rightarrow 2100$
$\mathrm{I}=\mathrm{E}+\mathrm{S}$
$\therefore 9$ unit $\rightarrow 300 \times 9=$ Rs. 2700 .
S14. Ans.(e)
Sol. Let the four consecutive even no. be $(x-3),(x-1),(x+1) \&(x+3)$
And three consecutive odd no. be $(y-2), y,(y+2)$
ATQ,
$4 x-3 y=49 \ldots$ (i)
$x-3+y-2=23$
$x+y=23+5$
$x+y=28 \ldots$ (ii)
Multiplying (ii) by 3 and on solving
$\therefore \mathrm{x}=19$
$y=9$
\therefore largest even no. $=19+3=22$

S15. Ans.(c)
Sol. Required number of students
$=1800 \times \frac{22}{25} \times \frac{4}{9}$
$=704$

Quiz - 36

S1. Ans.(a)
Sol.

$\begin{array}{l}\text { Alloy A } \\ \text { Copper } \\ \frac{2}{5}\end{array}$	$\begin{array}{c}\text { Alloy B } \\ \text { Copper } \\ 10\end{array}$

S2. Ans.(b)
Sol. Let total quantity of mixture initially $=100 x$
So quantity of milk initially $=75 x$
So quantity of water initially $=25 x$
8 liter of mixture is taken out
So, $\frac{8 \times 75}{100}=6$ liter of milk is taken out
$8-6=2$ liter of water is taken out
Now,
ATQ,
$\frac{75 x-6+7}{25 x-2}=\frac{7}{2}$
$x=\frac{16}{25}$
So initial quantity of mixture $=\frac{16}{25} \times 100=64 \mathrm{~L}$
S3. Ans.(a)
Sol. Let larger part is = Rs y.
Then smaller part = Rs. $(1800-y)$
ATQ,
$\frac{y \times x \times 2}{100}+(1800-y) \times \frac{4 \times 2}{100}=164$
$2 x y+14400-8 y=16400 \ldots$ (i)
and
$\frac{y \times 4 \times 2}{100}+(1800-y) \times \frac{x \times 2}{100}=160$
$8 y+3600 x-2 x y=16000 \ldots$ (ii)
Adding (i) and (ii)
$3600 x=16400+16000-14400$
$\mathrm{x}=5$
$x \%=5 \%$

S4. Ans(d)
Sol. sum left at the end of first year $=\left(400+400 \times \frac{10}{100}\right)-200=R s .240$
sum left at the end of $2^{\text {nd }}$ year $=\left(240+240 \times \frac{10}{100}\right)-64=R s .200$
sum paid at the end of 3 rd year to clear his debt. $=\left(200+200 \times \frac{10}{100}\right)=R s .220$
S5. Ans(c)
Sol. quantity of water and acid in initial mixture $=50 \times \frac{40}{100}, 50 \times \frac{60}{100}=20$ lit and 30 lit respctively.
Quantity of acid left after 30 lit of mixture taken out $=30-30 \times \frac{3}{5}=12$ lit.
Quantity of water left after 30 lit of mixture taken out $=20-30 \times \frac{2}{5}=8$ lit.
Required ratio $=\left(8+50 \times \frac{60}{100}\right):\left(12+50 \times \frac{40}{100}\right)=19: 16$
S6. Ans(b)
Sol. let total time of investment $=60 t$ months
Ratio of profit of A, B and C
$5 \times 60 t \times \frac{1}{12}: 3 \times 60 t \times \frac{1}{5}: 7 \times 60 t \times \frac{1}{15}$
$\Rightarrow 25: 36: 28$
ATQ
(36-28)units $=$ Rs. 800
Then, 25 units = Rs. 2500
S7. Ans.(a)
Sol. Rate of interest $(x)=\frac{910-845}{845} \times 100=\frac{65}{845} \times 100=7 \frac{9}{13} \%$
Total CI $=910+845=$ Rs. 1755
Let ' p ' amount was invested
C.I. $=P\left[\left(1+\frac{R}{100}\right)^{T}-1\right]$
$1755=P\left[\left(1+\frac{1}{13}\right)^{2}-1\right]$
$1755=\mathrm{P} \times \frac{27}{169}$
$\mathrm{P}=\frac{1755 \times 169}{27}=R s .10985$
S8. Ans (b)
Sol. Let the sum and rate of interest be Rs P and $\mathrm{R} \%$ respectively.
Second year C.I. $=2$ years S.I. + interest of one year on first year S.I.
2-year S.I. $=$ Rs. 500
1-year S.I. $=$ Rs. 250
So, interest on first year S.I. $=550-500=$ Rs. 50
Rate of interest $=\frac{50}{250} \times \times 100=20 \%$
S9. Ans (e)
Sol. Let quantity of two type of rice be 5 x and 3 x respectively.
Total cost $=5 x \times 90+3 x \times 40=R s 570 x$
So, per kg price of sugar $=\frac{570 x}{5 x+3 x}=\frac{570 x}{8 x}=R s 71.25$ per kg

S10. Ans.(a)
Sol. Atq
$66 \frac{2}{3} \% \rightarrow \frac{2}{3}$
$\frac{(x-30) \frac{13}{20}+2.5}{(x-30) \frac{7}{20}}=\frac{2}{1}$
$\Rightarrow \frac{13}{20} \mathrm{x}-19.5+2.5=\frac{14}{20} \mathrm{x}-21$
$\frac{x}{20}=21-17$
$\mathrm{x}=20 \times 4$
$x=80$ lit
S11. Ans (e)
Sol. Let Sunny invested for T months.
Ratio of profit share of Dinesh and Sunny $=\frac{12000 \times 12}{9000 \times T}=\frac{16}{T}$
Let profit share of Dinesh and Sunny be Rs 16x and Rs Tx respectively.
ATQ
$16 x+T x=8000$
And $T x=1600$
So, $16 x=6400$
$x=400$
$\mathrm{T}=4$
Sunny invested for 4 months.
\therefore after 8 months sunny joined the business.
S12. Ans (a)
Sol. Let the sum be Rs P and rate of interest is $\mathrm{R} \%$ per annum.
Simple interest for first year and second year is Rs 140 and Rs 140 respectively.
For first year compound interest and simple interest are same.
So, Compound interest for second year $=308-140=R s 168$
Rate of interest $=\frac{168-140}{140} \times 100=20 \%$
So, sum $=\frac{280 \times 100}{20 \times 2}=$ Rs 700
S13. Ans (d)
Sol. Let rate of interest be R\% per annum and sum be Rs P.
ATQ
$868-P=\frac{P \times R \times 4}{100}$
Now,
$910-P=\frac{P \times \frac{125}{100} \times R \times 4}{100}$
By dividing (i) from (ii)
$\frac{868-P}{910-P}=\frac{P \times R \times 4}{P \times \frac{125}{100} \times R \times 4}$
$\frac{868-P}{910-P}=\frac{4}{5}$
$4340-5 P=3640-4 P$
$P=$ Rs 700

S14. Ans (e)
Sol. Fraction of petrol taken out from the initial quantity
$=\frac{20}{240}=\frac{1}{12}$
So, remaining quantity of petrol in the final mixture
$=240 \times \frac{11}{12} \times \frac{11}{12}=201.66$ lit
S15. Ans.(a)
Sol. Profit sharing ratio of A, B \& C
$=(2000 \times 12):(2500 \times 12):(1500 \times 4)$
$=24000: 30000: 6000$
$=4: 5: 1$

Let total profit be Rs. P
ATQ,
$\frac{1}{(4+5+1)} \times P=350$
$\mathrm{P}=$ Rs. 3500

