S1. Ans.(e)
Sol. $\sqrt{5776}-\sqrt{1444}+\sqrt{729}=43+$?
$76-38+27=43+$?
? $=65-43=22$

S2. Ans.(a)
Sol. $78 \times 26 \div 6+1262=1311+(?)^{2}$
$2028 \div 6+1262=1311+(?)^{2}$
$338+1262=1311+(?)^{2}$
$(?)^{2}=1600-1311=289$
? $=\sqrt{289}=17$

S3. Ans.(a)
Sol. $1484 \div 28+1462 \div 34-12 \times 7=$?
? $=53+43-84=12$

S4. Ans.(c)

Sol. $42.5 \times 15+37.5 \times 25=1420+$?
$637.5+937.5=1420+$?
?= $1575-1420=155$

S5. Ans. (b)

Sol. $2450+3760-3830=6000-$?
$2380=6000-$?
?=6000-2380 = 3620

S6. Ans.(b)
Sol. $\sqrt{\frac{3840}{60}+\frac{1440}{40}-\frac{1330}{70}}$
$=\sqrt{64+36-19}$
$=\sqrt{81}$
$=9$

S7. Ans. (c)
Sol. $25 \times 18+\frac{4200}{40}-\frac{525}{105}=740-$?
$450+105-5=740-$?
?= 740-550
=190

NRA-CET Ready

BANK
MAHA PACK
Live Class, Video Course, Test Series, eBooks

Bilingual (with eBooks)
12+12 Months Validity

S8. Ans.(d)

Sol. $3845+4380+2640-5965=(?)^{2}$
$(?)^{2}=10865-5965$
$=4900$
? $=\sqrt{4900}$
=70

S9. Ans. (b)
Sol. $400 \div 20 \times 35+6666 \div 33+$? $=1100$
$20 \times 35+202+?=1100$
$?=1100-(700+202)$
$=1100-902$
$=198$

S10. Ans.(b)

Sol. $28 \times 14.5+1680 \div 15+445=1000-$?
$406+112+445=1000-$?
$963=1000-$?
? $=1000-963=37$

S11. Ans.(d)

Sol. Hockey players in school X and school Z together in year 2016
$=\frac{80}{(60-40)} \times 60+\frac{180}{(80-20)} \times 80$
$=240+240=480$
Cricket players in same schools together in year 2017
$=\frac{120}{(80-20)} \times 80+\frac{160}{(52-48)} \times 48$
$=160+1920=2080$
Required difference $=2080-480=1600$

S12. Ans.(a)

Sol. Cricket players in school K and L together in year 2016
$=\frac{320}{(70-30)} \times 70+\frac{100}{(55-45)} \times 55$
$=560+550=1110$
Hockey players in school Y in year 2017
$=\frac{80}{(55-45)} \times 55=440$
Required percentage $=\frac{1110}{440} \times 100$
$=252 \frac{3}{11} \%$

S13. Ans.(b)

Sol. Required average
$=\frac{1}{3}\left[\frac{150}{(75-25)} \times 25+\frac{180}{(80-20)} \times 20+\frac{160}{(52-48)} \times 48\right]$
$=\frac{1}{3}[75+60+1920]$
$=\frac{2055}{3}=685$

S14. Ans.(e)
Sol. Required ratio
$=\frac{\frac{80}{(55-45)} \times 55}{\frac{100}{(55-45)} \times 55}$
$=\frac{440}{550}$
$=\frac{4}{5}=4: 5$

S15. Ans.(c)
Sol. Required percentage
$=\frac{\frac{\frac{140}{(60-40)} \times 40 \sim}{\frac{320}{(70-30)}} \times 70}{\frac{320}{(70-30)} \times 70} \times 100$
$=\frac{280 \sim 560}{560} \times 100$
$=50 \%$

S16. Ans.(d)
Sol.

S17. Ans.(a)
Sol.

S18. Ans.(b)

Sol.

S19. Ans.(e)

Sol.

S20. Ans.(c)

Sol.

S21. Ans.(a)

Sol. required average $=\frac{7.5 \times 6+8.5 \times 2+42}{10}=10.40 \mathrm{run} / \mathrm{over}$

S22. Ans. (d)

Sol. let CP be Rs. x
SP (Johny) $=\frac{110}{100} \times x=$ Rs. $1.1 x$
Since Jini calculate profit at SP
$\frac{S P-x}{S P} \times 100=10$
$10 S P-10 x=S P$
$S P=R s . \frac{10}{9} x$
Required ratio $=1.1 x: \frac{10 x}{9}=99: 100$

S23. Ans.(b)

Sol. let red covers be ' x '
ATQ, $\frac{x}{5}=0.6 \Rightarrow x=3$
Green covers $=5-3=2$

S24. Ans.(e)

Sol. no boy sit together means boys will sit alternately
Ways to arrange girls = 5!
Now in alternate order, 6 places will be available to arrange boys
Ways to arrange boys $=6_{C_{3}}$
Total ways $=5!\times 6_{C_{3}}=2400$

S25. Ans.(a)

Sol. total distance $=4 \times \frac{30}{60}+10 \times \frac{20}{60}+50 \times \frac{10}{60}=\frac{41}{3} \mathrm{kms}$
Total time taken $=30+20+10=60$ minutes $=1$ hour
Average speed $=\frac{\frac{41}{3}}{1}=\frac{41}{3} \mathrm{kmph}=13.67 \mathrm{kmph}$

S26. Ans.(b)
Sol. Let the length(l) and breadth(b) of the rectangle be 20 x and 10 y respectively.
Area of the rectangle $=1 \times b=20 \mathrm{x} \times 10 y=200 \mathrm{xy}$
When length and breadth of the rectangle is increased by 20% and 10\% respectively,
then new length and new breadth of rectangle will be $24 x$ and $11 y$ respectively
new area of rectangle $=24 \mathrm{x} \times 11 \mathrm{y}=264 \mathrm{xy}$
$\%$ increase in area of the rectangle $=\frac{264 x y-200 x y}{200 x y} \times 100$
=32\%

S27. Ans.(c)

Sol. Here, Pipe A alone and Pipe B alone can fill the tank in 20 min and 30 min respectively and Pipe C alone can empty the tank in 10 min
Then, total work $=60$ units
Therefore, efficiency of pipe A and pipe B are 3 units/min and 2 units/min respectively and efficiency of pipe C is 6 units/min
Total efficiency when all 3 pipes are opened simultaneously=3+2-6=-1 unit/min
Total time taken to empty the tank if the tank is completely full $=\frac{60}{1}$
$=60 \mathrm{~min} \quad$ (as total efficiency of all 3 pipes is -1)

S28. Ans.(a)

Let R be effective interest and P be principal amount
So, $R=\frac{20}{2}=10 \%$
And, period of time $=2 \times 2=4$
(as it is compounded half- yearly)
C.I $=\mathrm{P}\left(1+\frac{R}{100}\right)^{4}-\mathrm{P}$
$=4000\left(1+\frac{10}{100}\right)^{4}-4000$
=Rs 1856.4

S29. Ans.(a)

There are 7 green, 6 blue and 5 red balls in a basket
Required probability(both being green or red) $=\frac{{ }^{7} C_{2}+{ }^{5} C_{2}}{18 C_{2}}=\frac{31}{153}$

S30. Ans.(b)

The container is full of 75 litre milk
Required quantity of milk=75 $\left(1-\frac{15}{75}\right)^{3}$
$=75\left(1-\frac{1}{5}\right)^{3}=38.4$ litres

S31. Ans.(a)

Sol. I. $2 \mathrm{x}^{2}+10 \mathrm{x}+12=0$
$2 x^{2}+6 x+4 x+12=0$
$(2 x+4)(x+3)=0$
$x=-3,-2$
II. $y^{2}+10 y+25=0$
$\mathrm{y}^{2}+5 \mathrm{y}+5 \mathrm{y}+25=0$
$(y+5)(y+5)=0$
$y=-5$
$\therefore \mathrm{x}>\mathrm{y}$

S32. Ans.(a)
Sol. I. $\mathrm{x}^{2}-3 \mathrm{x}-2 \mathrm{x}+6=0$
$(x-3)(x-2)=0$
$\mathrm{x}=+3,+2$
II. $y^{2}+6 y+y+6=0$
$(y+1)(y+6)=0$
$y=-1,-6$
$\therefore \mathrm{x}>\mathrm{y}$

S33. Ans.(d)

Sol. I. $\mathrm{x}= \pm 25$
II. $\mathrm{y}=+25$
$\therefore \mathrm{x} \leq \mathrm{y}$

S34. Ans.(a)

Sol. (I) $\times 2-$ (II)
$-6 y+2 y=-16$
$y=4$
$x=6$
$x>y$.

S35. Ans.(e)
Sol. I. $\mathrm{x}=+11$
$y=+11$
$\therefore \mathrm{x}=\mathrm{y}$

adda
 publications

BDOKS

Visit: publications.adda247.com \& store.adda247.com
For any information, mail us at publications@adda247.com

