Adda 247

Quantitative Aptitude for IBPS Clerk Prelims 2022- Solutions PDF

S1. Ans.(d)
Sol. $\frac{48}{100} \times 525+\frac{?}{100} \times 250=499$
$?=\frac{247 \times 100}{250}=98.8$
S2. Ans.(c)
Sol. $\frac{5}{2} \times \frac{7}{8} \times \frac{1}{28} \times 1600=260+?-499$
? $=499+125-260$
$=364$
S3. Ans.(a)
Sol. ? $=\sqrt{5125-289-75}$
$=\sqrt{4761}=69$

S4. Ans.(b)

Sol. $(?)^{2}=16 \times 7+361+11$
$=484$
? = 22 .
S5. Ans.(b)
Sol. $252+26+420=121+$?
? = 577
S6. Ans.(c)
Sol. 80% of $?=\sqrt{250 \times 44+\frac{40 \times 8500}{100}}$
$\Rightarrow \frac{80}{100} \times ?=\sqrt{11000+3400}$
$\Rightarrow ?=\sqrt{14400} \times \frac{10}{8}$
\Rightarrow ? $=120 \times \frac{10}{8}=150$

S7. Ans.(a)

Sol. ? $\times \frac{40}{24} \times 27=\frac{594}{115} \times \frac{2300}{264}$
$\Rightarrow ? \times 45=45$
\Rightarrow ? $=1$

S8. Ans.(d)

Sol. $\frac{20}{100} \times 40 \times \sqrt{?}=32^{2}+16^{2}$
$\Rightarrow \sqrt{?}=\frac{1}{8} \times(1024+256)$
$\Rightarrow \sqrt{?}=\frac{1}{8} \times 1280=160$
\Rightarrow ? $=(160)^{2}=25600$

S9. Ans.(b)

Sol. ? $+13 \times 50=420+\frac{45}{100} \times 800+220$
$\Rightarrow ?+650=420+360+220$
\Rightarrow ? $=1000-650=350$

S10. Ans.(e)
Sol. $(?)^{\frac{3}{2}}=256 \times(2)^{8} \div(8)^{5} \times 32$
$\Rightarrow(?)^{\frac{3}{2}}=\frac{2^{8} \times 2^{8}}{2^{15}} \times 2^{5}$
$\Rightarrow(?)^{\frac{3}{2}}=(2)^{6}=64$
$\Rightarrow ?=(64)^{\frac{2}{3}}=16$

S11. Ans. (c)

Sol. $\left(\frac{4 \frac{4}{5} \text { of } 25}{48}\right) \div\left(\frac{5}{4}\right.$ of $32+\frac{3}{7}$ of 21$)=$? of $\frac{1}{49}$
$\left(\frac{24}{5} \times \frac{25}{48}\right) \div(40+9)=? \times \frac{1}{49}$
? $=49 \times \frac{5}{98}=\frac{5}{2}=2.5$
S12. Ans.(b)
Sol. $\sqrt{?}$ of $6+20 \%$ of $95=\frac{1}{2}$ of 62
$\sqrt{?}$ of $6=\frac{62}{2}-\frac{20}{100} \times 95=12$
$?=2^{2}=4$
S13. Ans. (e)
Sol. $\left(\frac{5}{3}\right.$ of $6 \frac{3}{5}$ of $\left.\frac{9}{11}\right)+?^{2}=45$
$\left(\frac{5}{3} \times \frac{33}{5} \times \frac{9}{11}\right)+?^{2}=45$
$?^{2}=36$
$?= \pm 6$
S14. Ans.(a)
Sol. $\left(\frac{4}{7} \times \frac{14}{5} \div 2\right)-\left(\frac{3}{10}\right.$ of ? $)=\frac{4}{5}-3$
$\left(\frac{4}{7} \times \frac{14}{5} \times \frac{1}{2}\right)-\left(\frac{3}{10} \times ?\right)=-\frac{11}{5}$
$\frac{4}{5}-\frac{3}{10} ?=-\frac{11}{5}$
$?=10$

NRA-CET Ready

Live Class, Video Course, Test Series, eBooks

Bilingual (with eBooks)

S15. Ans.(c)
Sol. $4 \frac{4}{5}+2 \frac{1}{15}-\frac{27}{5}=2 \frac{1}{5} \div 3 \times$?
$\frac{24}{5}+\frac{31}{15}-\frac{27}{5}=\frac{11}{5} \times \frac{1}{3} \times$?
$\frac{22}{15}=\frac{11}{15} \times$?
? $=2$

S16. Ans.(e)

Sol. $\sqrt{5776}-\sqrt{1444}+\sqrt{729}=43+$?
$76-38+27=43+$?
?=65-43=22

S17. Ans.(a)
Sol. $78 \times 26 \div 6+1262=1311+(?)^{2}$
$2028 \div 6+1262=1311+(?)^{2}$
$338+1262=1311+(?)^{2}$
$(?)^{2}=1600-1311=289$
? $=\sqrt{289}=17$
S18. Ans. (a)
Sol. $1484 \div 28+1462 \div 34-12 \times 7=$?
?=53+43-84=12
S19. Ans. (c)
Sol. $42.5 \times 15+37.5 \times 25=1420+$?
$637.5+937.5=1420+$?
? $=1575-1420=155$

S20. Ans. (b)

Sol. $2450+3760-3830=6000-$?
$2380=6000$ - ?
$?=6000-2380=3620$

S21. Ans.(a)

Sol. $\frac{125.98}{154.03} \times \frac{198.02}{17.99}-\frac{156.05}{101.98} \times \frac{51.03}{78.03}=$?
$\frac{126}{154} \times \frac{198}{18}-\frac{156}{102} \times \frac{51}{78} \approx$?
$? \approx 9-1 \approx 8$

S22. Ans.(d)

Sol. 80.08% of $349.98+45.02 \%$ of $799.99=$? $\% \times 255.95$
80% of $350+45 \%$ of $800 \approx ? \% \times 256$
$280+360 \approx ? \% \times 256$
$? \approx \frac{640}{256} \times 100=250$
S23. Ans. (b)
Sol. $\sqrt{1224.99} \div 6.99=$? -1799.98
$\sqrt{1225} \div 7 \approx ?-1800$
$5 \approx$? -1800
$? \approx 1810$

S24. Ans.(e)

Sol. 2744.98-1417.99 = ? +987.98
$2745-1418 \approx ?+988$
? ≈ 339

S25. Ans.(c)
Sol. ? ${ }^{2}=44.99 \%$ of 4500.02-24.99\% of $3959.98+$ 87.01×2.97
$?^{2} \approx 45 \%$ of $4500-25 \%$ of $3960+87 \times 3$
$?^{2} \approx 1296$
? ≈ 36

S26. Ans.(a)
Sol. $1749.98 \div 350 \times 49.79+111.03=(?)^{2}$
$\frac{1750}{350} \times 50+111 \approx(?)^{2}$
$?=19$

S27. Ans.(a)
Sol. $? \times 625.04=15625.01+9999.99$
$? \times 625 \approx 15625+10000$
? ≈ 41

S28. Ans. (c)

Sol. 29.98% of $701-350.01+82 \%$ of $501=$?
30% of $700-350+82 \%$ of $500 \approx$?
$? \approx 210-350+410 \approx 270$
S29. Ans.(e)
Sol. $5759.99 \div 45.01+11.99=? \times 10.03$
$5760 \div 45+12 \approx ? \times 10$
$? \approx \frac{140}{10} \approx 14$

S30. Ans. (c)
Sol. $1395.98+412.04-2703.99=?-(31.02)^{2}$
$1396+412-2704 \approx ?-(31)^{2}$
? $\approx 961-896 \approx 65$

S31. Ans.(d)

Sol. $41.979 \times \frac{22}{7}+19.989 \%$ of $530.014-26.021=$?
$42 \times \frac{22}{7}+20 \%$ of $530-26 \approx$?
$? \approx 132+106-26 \approx 212$

S32. Ans.(c)
Sol. $(23.012 \times 22.989)+20.985 \times 7.014=?^{2}$
$(23 \times 23)+21 \times 7 \approx ?^{2}$
$?^{2} \approx 529+147 \approx 676$
? ≈ 26

S33. Ans.(a)

Sol. $\sqrt{1443.979} \div 18.981+3.5 \times \sqrt{16.017}=(?)$
$\sqrt{1444} \div 19+3.5 \times \sqrt{16} \approx$?
$? \approx \frac{38}{19}+3.5 \times 4$
$? \approx 2+14 \approx 16$

S34. Ans.(e)

Sol. $779.98 \div 48.014 \times 15.989=$?
$\frac{780}{48} \times 16 \approx$?
$? \approx \frac{780}{3} \approx 260$

S35. Ans. (b)
Sol. $1485.988+212.04-1703.99=?-(11.02)^{2}$
$1486+212-1704 \approx ?-(11)^{2}$
$? \approx 1698-1704+121 \approx 115$

S36. Ans. (d)
Sol. $43.495 \times \frac{64.02}{31.99} \times \frac{1}{28.979}-2.012=$?
$43.5 \times \frac{64}{32} \times \frac{1}{29}-2 \approx$?
$? \approx 1$

S37. Ans. (b)
Sol. $(33.33 \times 80.989 \div 99.99)+3.024-?=4.012$
$\left(\frac{33.33}{99.99} \times 81\right)+3-? \approx 4$
? ≈ 26

S38. Ans.(a)

Sol. $20.021+4.969+30.499-50.022=$?
$20+5+30.5-50 \approx$?
$? \approx 5.5$

S39. Ans.(c)
Sol. $995.013-39.976 \times 19.99+5.022=1.988 \times$?
$995-40 \times 20+5=2 \times$?
? ≈ 100

S40. Ans.(e)

Sol. $(10.011)^{2}+(23.989)^{2}=275.99+?^{2}$
$10^{2}+24^{2}=276+?^{2}$
? $=20$

S41. Ans. (b)

Sol. Pattern is
$0.5 \times(2-0)=1$
$1 \times(2-0.5)=1.5$
$1.5 \times(2-1)=1.5$
$1.5 \times(2-1.5)=0.75$
$0.75 \times(2-2)=0$

S42. Ans. (d)
Sol. Pattern is
$5 \times 3=15$
$15 \times 3=45$
$45 \times 3=135$
$135 \times 3=405$
$405 \times 3=1215$

S43. Ans.(e)

Sol. Pattern is
$90+6=96 ; 96+6=102$
$102+6=108 ; 108+6=114$
$114+6=120$

S44. Ans.(a)
Sol. Pattern is
$389-(9+0)=380$
$380-(9+1)=370$
$370-(9+2)=359$
$359-(9+3)=347$
$347-(9+4)=334$

S45. Ans. (b)
Sol. Pattern is addition of prime no.
$1+2=3$
$3+3=6$
$6+5=11$
$11+7=18$
$18+11=29$

S46. Ans. (c)
Sol.

S47. Ans. (e)
Sol.

S48. Ans. (a)
Sol.

S49. Ans. (d)
Sol.

S50. Ans.(b)

Sol.

S51. Ans. (d)
Sol.

S52. Ans. (a)
Sol.

S53. Ans. (b)
Sol.

S54. Ans.(e)
Sol.

S55. Ans. (c)
Sol.

S56. Ans. (d)
Sol. addition of prime numbers
Pattern is
$31+2=33$
$33+3=36$
$36+5=41$
$41+7=48$
$48+11=59$

S57. Ans.(e)
Sol. Pattern is
$6 \times 6=36$
$36 \times 5=180$
$180 \times 4=720$
$720 \times 3=2160$
$2160 \times 2=4320$

S58. Ans. (b)
Sol. Pattern is
$23+6=29$
$29+6=35$
$35+6=41$
$41+6=47$
$47+6=53$

S59. Ans. (d)
Sol. $1+2^{2}=5$
$5+3^{2}=14$
$14+4^{2}=30$
$30+5^{2}=55$
$55+6^{2}=91$

S60. Ans.(c)
Sol. Pattern is
$5+(5 \times 1)=10$
$10+(5 \times 2)=20$
$20+(5 \times 3)=35$
$35+(5 \times 4)=55$
$55+(5 \times 5)=\mathbf{8 0}$

S61. Ans. (b)
Sol. Pattern is
$10^{2}+10=110$
$12^{2}+12=156$
$14^{2}+14=210$
$16^{2}+16=272$
$18^{2}+18=342$
$20^{2}+20=420$
$22^{2}+22=506$
wrong number is 282 which should be replaced with 272

S62. Ans. (d)
Sol. Pattern is
$2000 \times 1=2000$
$2000 \div 2=1000$
$1000 \times 3=3000$
$3000 \div 4=750$
$750 \times 5=3750$
$3750 \div 6=625$
wrong number is 600 which should be replaced with 750

S63. Ans.(a)
Sol. Pattern is
$2 \times 1+0=2$
$2 \times 2+1=5$
$5 \times 3+2=17$
$17 \times 4+3=71$
$71 \times 5+4=359$
$359 \times 6+5=2159$
wrong number is 72 which should be replaced with 71
S64. Ans.(e)
Sol. Pattern is
$9000-(180 \times 6)=7920$
$7920-(180 \times 5)=7020$
$7020-(180 \times 4)=6300$
$6300-(180 \times 3)=5760$
$5760-(180 \times 2)=5400$
$5400-(180 \times 1)=5220$
wrong number is 5200 which should be replaced with 5220

S65. Ans.(d)
Sol. Pattern is
$100+(4 \times 5)=120$
$120+(5 \times 6)=150$
$150+(6 \times 7)=192$
$192+(7 \times 8)=248$
$248+(8 \times 9)=320$
$320+(9 \times 10)=410$

wrong number is 154 which should be replaced with 150

S66. Ans.(c)

Sol. Pattern followed is
$7 \times 0.5+0.5=4$
$4 \times 1+1=5$
$5 \times 1.5+1.5=9$
$9 \times 2+2=20$
$20 \times 2.5+2.5=52.5$
$52.5 \times 3+3=160.5$
So, wrong number is 8.5 which should be replaced by 9
S67. Ans.(d)
Sol. Pattern followed is
$160+47=207$
$207+53=260$
$260+59=319$
$319+61=380$
$380+67=447$
$447+71=518$
So, wrong number is 449 which should be replaced by 447

S68. Ans.(c)
Sol. Pattern followed is
$12 \times 0.5=6$
$6 \times 1=6$
$6 \times 2=12$
$12 \times 3.5=42$
$42 \times 5.5=231$
$231 \times 8=1848$
So, wrong number is 36 which should be replaced by 42

S69. Ans.(e)

Sol. Pattern followed is
$14700 \div 7=2100$
$2100 \times 6=12600$
$12600 \div 5=2520$
$2520 \times 4=10080$
$10080 \div 3=3360$
$3360 \times 2=6720$
So, wrong number is 2500 which should be replaced by 2520

S70. Ans.(c)
Sol. Pattern followed is
$(4.5)^{2}=20.25$
$(4.8)^{2}=23.04$
$(5.1)^{2}=26.01$
$(5.4)^{2}=29.16$
$(5.7)^{2}=32.49$
$(6.0)^{2}=36.00$
$(6.3)^{2}=39.69$
So, wrong number is 32.56 and it should be replaced by 32.49

S71. Ans.(d)
Sol.

So, the wrong no. in this series is 640

S72. Ans.(a)

Sol.

So, the wrong no. in this series is 1

S73. Ans.(c)

Sol.

So, the wrong no. in this series is 41 .

S74. Ans.(b)

Sol.

So, the wrong no. in this series is 7 .
S75. Ans.(d)
Sol.

So, the wrong no. in this series is 53 .
S76. Ans.(d)
Sol. $10^{2}+2=102$
$9^{2}+2=83$
$8^{2}+2=66$
$7^{2}+2=51$
$6^{2}+2=38$
$5^{2}+2=27$
$4^{2}+2=18$
Hence, wrong term is 50 .
S77. Ans.(c)
Sol. $1^{2}+1^{3}=2$
$2^{2}+2^{3}=12$
$3^{2}+3^{3}=36$
$4^{2}+4^{3}=80$
$5^{2}+5^{3}=150$

$6^{2}+6^{3}=252$
$7^{2}+7^{3}=392$
So, wrong number is 251
S78. Ans.(c)
Sol. All numbers in the series are prime except 15. So, wrong term is 15 .

S79. Ans.(a)
Sol. $11+11=22$
$22+12=34$
$34+13=47$
$47+14=61$
$61+15=76$
$76+16=92$
So, wrong term is 77
S80. Ans.(a)
Sol. $2 \times 2+1=5$
$5 \times 2+1=11$
$11 \times 2+1=23$
$23 \times 2+1=47$
$47 \times 2+1=95$
$95 \times 2+1=191$
So, wrong term is 6 .

S81. Ans.(c)
Sol. I. $x^{2}-21 x+110=0$
$\mathrm{x}^{2}-11 \mathrm{x}-10 \mathrm{x}+110=0$
$x(x-11)-10(x-11)=0$
$(x-11)(x-10)=0$
$\mathrm{x}=11,10$
II. $y^{2}-25 y+156=0$
$\mathrm{y}^{2}-13 \mathrm{y}-12 \mathrm{y}+156=0$
$y(y-13)-12(y-13)=0$
$(y-13)(y-12)=0$
$y=13,12$
So, $\mathrm{x}<\mathrm{y}$

S82. Ans.(a)
Sol. I. $x^{2}+29 x+208=0$
$\mathrm{x}^{2}+16 \mathrm{x}+13 \mathrm{x}+208=0$
$x(x+16)+13(x+16)=0$
$(x+16)(x+13)=0$
$\mathrm{x}=-16,-13$
II. $y^{2}+35 y+306=0$
$\mathrm{y}^{2}+17 \mathrm{y}+18 \mathrm{y}+306=0$
$y(y+17)+18(y+17)=0$
$(y+18)(y+17)=0$
$y=-17,-18$
So, $\mathrm{x}>\mathrm{y}$

S83. Ans.(b)

Sol. I. $x=\sqrt[3]{4096}$
$\mathrm{x}=16$
II.
$\mathrm{y}^{2}+121=377$
$\mathrm{y}^{2}=256$
$y= \pm 16$
So, $x \geq y$

S84. Ans.(e)
Sol. I. $3 x^{2}+23 x+44=0$
$3 \mathrm{x}^{2}+12 \mathrm{x}+11 \mathrm{x}+44=0$
$3 x(x+4)+11(x+4)=0$
$(3 x+11)(x+4)=0$
$\mathrm{x}=-4,-\frac{11}{3}$
II. $4 y^{2}+33 y+65=0$
$4 y^{2}+20 y+13 y+65=0$
$4 y(y+5)+13(y+5)=0$
$(y+5)(4 y+13)=0$
$y=-5,-\frac{13}{4}$
So, No relation

S85. Ans.(b)
Sol. I. $x^{2}+41 x+418=0$
$\mathrm{x}^{2}+19 \mathrm{x}+22 \mathrm{x}+418=0$
$x(x+19)+22(x+19)=0$
$(x+19)(x+22)=0$
$\mathrm{x}=-19,-22$
II. $y^{2}+47 y+550=0$
$\mathrm{y}^{2}+22 \mathrm{y}+25 \mathrm{y}+550=0$
$y(y+22)+25(y+22)=0$
$(y+22)(y+25)=0$
$y=-22,-25$
So, $x \geq y$

S86. Ans.(b)
Sol. I. $2 \mathrm{x}^{2}-17 \mathrm{x}+36=0$
$2 x^{2}-8 x-9 x+36=0$
$2 x(x-4)-9(x-4)=0$
$(2 x-9)(x-4)=0$
$\mathrm{x}=\frac{9}{2}$, 4
II. $3 y^{2}-22 y+40=0$
$3 y^{2}-12 y-10 y+40=0$
$3 y(y-4)-10(y-4)=0$
$(y-4)(3 y-10)=0$
$\mathrm{y}=4, \frac{10}{3}$
$x \geq y$

S87. Ans. (c)

Sol. I. $\mathrm{x}^{2}+21 \mathrm{x}+108=0$
$x^{2}+9 x+12 x+108=0$
$x(x+9)+12(x+9)=0$
$(x+12)(x+9)=0$
$x=-12,-9$
II. $y^{2}+14 y+48=0$
$y^{2}+6 y+8 y+48=0$
$y(y+6)+8(y+6)=0$
$(y+8)(y+6)=0$
$y=-8,-6$
$y>x$

TEST SERIES
 BILINGUAL VIDEO SOLUTIONS
 IBPS PO 2022 PRELIMS + MAINS

S88. Ans. (d)
Sol. I. $2 x^{2}+7 x-60=0$
$2 x^{2}+15 x-8 x-60=0$
$x(2 x+15)-4(2 x+15)=0$
$(\mathrm{x}-4)(2 \mathrm{x}+15)=0$
$x=4, \frac{-15}{2}$
II. $3 y^{2}-28 y+64=0$
$3 y^{2}-12 y-16 y+64=0$
$3 y(y-4)-16(y-4)=0$
$(3 y-16)(y-4)=0$
$y=\frac{16}{3}, 4$
$y \geq x$

S89. Ans.(e)
Sol. I. $x^{2}-2 x-24=0$
$x^{2}-6 x+4 x-24=0$
$x(x-6)+4(x-6)=0$
$(x+4)(x-6)=0$
$x=6,-4$
II. $y^{2}+3 y-40=0$
$y^{2}+8 y-5 y-40=0$
$y(y+8)-5(y+8)=0$
$(y-5)(y+8)=0$
$y=5,-8$
No relation can be established

S90. Ans. (c)
Sol. I. $4 \mathrm{x}^{2}+27 \mathrm{x}+45=0$
$4 x^{2}+12 x+15 x+45=0$
$4 x(x+3)+15(x+3)=0$
$(4 \mathrm{x}+15)(\mathrm{x}+3)=0$
$x=\frac{-15}{4},-3$
II. $5 y^{2}+42 y+88=0$
$5 y^{2}+20 y+22 y+88=0$
$5 y(y+4)+22(y+4)=0$
$(5 y+22)(y+4)=0$
$y=-4, \frac{-22}{5}$
$x>y$

S91. Ans.(e)
Sol. I. $x^{2}+5 x+6=0$
$x^{2}+3 x+2 x+6=0$
$(x+3)(x+2)=0$
$x=-2,-3$
II. $y^{2}+9 y+14=0$
$y^{2}+7 y+2 y+14=0$
$(y+2)(y+7)=0$
$y=-2,-7$
Clearly, no relation can be established

S92. Ans.(b)
Sol. I. $x^{2}-18 x+45=0$
$x^{2}-15 x-3 x+45=0$
$(x-3)(x-15)=0$
$x=3,15$
II. $y^{2}+12 y-45=0$
$y^{2}+15 y-3 y-45=0$
$(y-3)(y+15)=0$
$y=3,-15$
Clearly, $x \geq y$

S93. Ans.(e)

Sol. I. $9 x^{2}+11 x+2=0$
$9 x^{2}+9 x+2 x+2=0$
$(9 x+2)(x+1)=0$
$x=-\frac{2}{9},-1$
II. $8 y^{2}+6 y+1=0$
$8 y^{2}+4 y+2 y+1=0$
$(4 y+1)(2 y+1)=0$
$y=-\frac{1}{2},-\frac{1}{4}$
Clearly, no relation can be established

S94. Ans.(c)

Sol. I. $6 x^{2}+5 x+1=0$
$6 x^{2}+3 x+2 x+1=0$
$(3 x+1)(2 x+1)=0$
$x=-\frac{1}{3},-\frac{1}{2}$
II. $4 y^{2}-15 y=4$
$4 y^{2}-16 y+y-4=0$
$(4 y+1)(y-4)=0$
$y=-\frac{1}{4}, 4$
Clearly, $x<y$

S95. Ans.(c)

Sol. I. $x^{2}+3 x=0$
$x(x+3)=0$
$x=0,-3$
II. $x^{2}+y=10$
$y=10-x^{2}$
if $x=0, y=10$
if $x=-3, y=10-(-3)^{2}=1$
Clearly, $x<y$

S96. Ans.(c)

Sol. I. $x^{2}-25 x+156=0$
$\mathrm{x}^{2}-12 \mathrm{x}-13 \mathrm{x}+156=0$
$x(x-12)-13(x-12)=0$
$(x-12)(x-13)=0$
$\mathrm{x}=12,13$
II. $y^{2}-29 y+210=0$
$\mathrm{y}^{2}-14 \mathrm{y}-15 \mathrm{y}+210=0$
$y(y-14)-15(y-14)=0$
$(y-14)(y-15)=0$
$y=14,15$
So, $\mathrm{x}<\mathrm{y}$

S97. Ans.(d)
Sol. I. $x^{2}=196$
$\mathrm{x}=\sqrt{196}$
$\mathrm{x}= \pm 14$
II. $y=\sqrt{196}$
$\mathrm{y}=14$
So, $\mathrm{x} \leq \mathrm{y}$
S98. Ans. (e)
Sol. I. $x^{2}+12 x+35=0$
$\mathrm{x}^{2}+5 \mathrm{x}+7 \mathrm{x}+35=0$
$x(x+5)+7(x+5)=0$
$(x+5)(x+7)=0$
$\mathrm{x}=-5,-7$
II. $y^{2}+14 y+48=0$
$\mathrm{y}^{2}+6 \mathrm{y}+8 \mathrm{y}+48=0$
$y(y+6)+8(y+6)=0$
$(y+8)(y+6)=0$
$y=-8,-6$
So, no relation.
S99. Ans. (a)
Sol. I. $3 x^{2}+23 x+30=0$
$3 \mathrm{x}^{2}+18 \mathrm{x}+5 \mathrm{x}+30=0$
$3 x(x+6)+5(x+6)=0$
$(3 x+5)(x+6)=0$
$\mathrm{x}=-6,-\frac{5}{3}$
II. $y^{2}+15 y+56=0$
$\mathrm{y}^{2}+8 \mathrm{y}+7 \mathrm{y}+56=0$
$y(y+8)+7(y+8)=0$
$(y+7)(y+8)=0$
$y=-7,-8$
So, $x>y$
S100. Ans.(c)
Sol. I. $x^{2}+17 x+72=0$
$\mathrm{x}^{2}+8 \mathrm{x}+9 \mathrm{x}+72=0$
$x(x+8)+9(x+8)=0$
$(x+9)(x+8)=0$
$\mathrm{x}=-8,-9$
II. $y^{2}+13 y+42=0$
$\mathrm{y}^{2}+6 \mathrm{y}+7 \mathrm{y}+42=0$
$y(y+6)+7(y+6)=0$
$(y+6)(y+7)=0$
$y=-6,-7$
So, $\mathrm{x}<\mathrm{y}$
S101. Ans.(e)
Sol. let actual SP be Rs. x
New selling price $=$ Rs. $\frac{4 x}{5}$
Let CP be Rs. y
ATQ $\frac{\frac{4 x}{5}-y}{y}=\frac{20}{100}=\frac{1}{5}$
$\frac{4 x}{5}-y=\frac{y}{5}$
$\frac{y}{x}=\frac{2}{3}$
When article sold at actual selling price,
Profit $\%=\frac{x-y}{y} \times 100=\frac{\frac{3 y}{2}-y}{y} \times 100=50 \%$

S102. Ans.(e)
Sol. let CP be Rs. x
MP $=\frac{130}{100} \times x=R s .1 .3 x$
$\mathrm{SP}($ given $)=\frac{90}{100} \times 1.3 x=$ Rs. $1.17 x$
Earlier SP (announced) $=\frac{85}{100} \times 1.3 x=R s .1 .105 x$
Gain $=1.17 x-1.105 x=$ Rs. $0.065 x$
$0.065 x=13$
$x=$ Rs. 200

S103. Ans.(a)

Sol. let CP of bags be Rs. $4 \mathrm{x} \& \mathrm{Rs}$. 5 x respectively.
Total SP of bags $=\frac{110}{100} \times 4 x+\frac{120}{100} \times 5 x=4.4 x+6 x=$
Rs. $10.4 x$
Required Profit $\%=\frac{10.4 x-9 x}{9 x} \times 100=15 \frac{5}{9} \%$

S104. Ans.(b)
Sol. Let cost price of the item be 100x
Marked price of the item $=100 \mathrm{x}+100 \mathrm{x} \times \frac{60}{100}=160 \mathrm{x}$
Selling price of items after giving discounts $=160 \mathrm{x} \times$
$\frac{90}{100} \times \frac{85}{100}=122.4 \mathrm{x}$
Profit percentage $=\frac{122.4 x-100 x}{100 x} \times 100=22.4 \%$

S105. Ans.(c)

Sol. Let original cost price of the article be Rs.100x.
So, original selling price of the article $=100 x \times \frac{110}{100}$
= Rs.110x
Now, new cost price of the article $=100 x \times \frac{95}{100}=$ Rs. 95 x
And, new selling price of the article $=$ Rs. $(110 \mathrm{x}+120)$
ATQ,
$95 x \times \frac{120}{100}=110 x+120$
$\Rightarrow 4 x=120$
$\mathrm{x}=30$
So, cost price of the article $=100 \mathrm{x}=$ Rs. 3000

S106. Ans.(c)

Sol. distance covered is directly proportional to speed
When they start at same time, they will cover distance in ratio of their speeds
Let distance covered by Kappu \& Chandu be 5x km \& 6x km respectively
Required answer $=\frac{6 x-5 x}{6 x+5 x} \times 110=10 \mathrm{kms}$

S107. Ans.(c)

Sol. Let the speed of Abhishek and Rahul be $6 x$ and $5 x$ respectively.
Required time $=\frac{6 x \times 5}{5 x}=6$ hours .

S108. Ans.(a)
Sol. let speed of Manoj \& Shreya be x \& y kmph respectively
Let Manoj covers D km in thours
ATQ, $x=\frac{D}{t} \mathrm{kmph}$
$y=\frac{2 D}{\frac{t}{2}}=\frac{4 D}{t} \mathrm{kmph}$
$x: y=1: 4$ or $a: 4 a$
Since distance travelled by both will be same (Shreya catches him)
Let time taken by Shreya to cover $20 / 3 \mathrm{~km}$ be k hours
$x\left(k+\frac{30}{60}\right)=y k$
$a k+\frac{a}{2}=4 a k$
$k=\frac{1}{6}$ hours $=10 \mathrm{~min}$
Speed of Shreya $=\frac{20}{3} \times 6=40 \mathrm{kmph}$

S189. Ans.(b)

Sol. Here, the total distance between P to Q is 594 km Relative Speed=($63+54) \mathrm{km} / \mathrm{hr}$
$=117 \mathrm{~km} / \mathrm{hr}$
Distance travelled by Train A in $2 \mathrm{hrs}=63 \times 2=126 \mathrm{~km}$ Remaining distance $=594-126$
$=468 \mathrm{~km}$
Time required to cover the remaing distance $=\frac{468}{117}=4 \mathrm{hrs}$ Distance travelled by Train B in $4 \mathrm{hr}=54 \times 4=216 \mathrm{~km}$ Both train will meet at 216 km distance from Q

S110. Ans.(c)

Sol. when time is same then speed is directly proportional to distance covered
Let speed of Dhoni, Rohit \& Virat be x kmph, y kmph \& z
kmph respectively
$\mathrm{x}: \mathrm{y}=1: 3$ or $\mathrm{a}: 3 \mathrm{a}$
$\mathrm{z}=\frac{150}{100} \times 3=4.5 \mathrm{akmph}$
ATQ, $\frac{D}{a+4.5 a}=2$
D = 11a km
Required time $=\frac{D}{4.5 a}=\frac{11 a}{4.5 a}=2.44$ hours

S111. Ans.(b)

Sol. Let quantity of petrol in the vessel be 30 x liters
So, quantity of diesel in the vessel $=30 x \times \frac{25}{75}$
$=10 \mathrm{x}$ liters
Now, quantity of kerosene in the vessel
$=\left(30 x \times \frac{100}{50}\right)-(30 x+10 x)$
$=20 \mathrm{x}$ liters
Required ratio $=\frac{20 x}{10 x}$
$=2: 1$

S112. Ans.(c)

Sol. Let initial quantity of the mixture in the vessel be x litre
In 20 litre mixture,
Quantity of alcohol $=\frac{3}{10} \times 20=6$ litre
Quantity of water $=\frac{7}{10} \times 20=14$ litre
ATQ, $\frac{\frac{3 x}{10}-6}{\frac{7 x}{10}-14+2}=\frac{1}{3}$
$\frac{3 x-60}{7 x-120}=\frac{1}{3}$
$9 x-180=7 x-120$
$\mathrm{x}=30$ litre

S113. Ans.(a)

Sol. Let cost price of the mixture $=$ Rs x per kg
$35 \quad 50$
x
$3 \quad 2$
(50-x) : (x-35) $=3: 2$
$\frac{50-x}{x-35}=\frac{3}{2}$
$100-2 x=3 x-105$
$5 x=205$
$\mathrm{x}=41$
Selling price of the mixture when sold at 25% profit $=41$
$\times \frac{125}{100}$
=Rs 51.25 per kg
S114. Ans.(b)
Sol.

$\Rightarrow 7: 4$

S115. Ans.(a)

Sol. If x litres of water is added to the mixture, the ratio of milk and water will be 14:5
$\frac{14}{5}=\frac{\frac{7}{8} \times 64}{\frac{1}{8} \times 64+x}$
$\frac{14}{5}=\frac{56}{x+8}$
$14 \mathrm{x}+112=280$
$14 \mathrm{x}=168$
$x=12$ litres

S116. Ans.(c)
Sol. Let son's present age $=\mathrm{x}$ years
Then, person's present age $=(x+16)$ year
After 2 yrs, $(x+16)+2=2(x+2)$
$\mathrm{x}+18=2 \mathrm{x}+4$
$\mathrm{x}=14$ years
Hence, son's age after 8 years $=14+8=22$ yrs

S117. Ans.(c)

Sol. Let present ages of Karan and Arjun be 4 x \& 3x years respectively
$4 x=3 x+5$
$x=5$
Present age of Karan $=4 x=20$ years
Present age of Arjun $=3 x=15$ years
Present age of Mahesh $=\frac{20}{2} \times 5=50$ years
Required ratio $=(50-10):(20-10):(15-10)=40:$
$10: 5=8: 2: 1$

S118. Ans.(d)

Sol. Let present age of suman's son be x yr
Hence, age of suman $=(x+25)$ yr
According to the question, $\frac{x+7}{(x+25)+7}=\frac{1}{2}$
$2 x+14=x+32$
$\mathrm{x}=32-14=18 \mathrm{yrs}$
S119. Ans.(c)
Sol. Let present age of shivam and ayush be ' p ' yrs and ' q ' yrs respectively
$(p+5)=\frac{120}{100} \times p$
$(p+5)=\frac{6 p}{5}$
$\mathrm{p}=25$
Also, $(q-6)=\left(\frac{75}{100}\right) \times q$
$\mathrm{q}-6=\frac{3 q}{4}$
$\mathrm{q}=24$
Sum of ages of shivam and ayush, 8 yrs hence
$=25+8+24+8$
$=65 \mathrm{yrs}$

S120. Ans.(b)

Sol. Let present age of Father and his son be 3 x and x yrs respectively
$\frac{3 x+6}{x+6}=\frac{7}{3}$
$9 \mathrm{x}+18=7 \mathrm{x}+42$
$2 \mathrm{x}=24$
$\mathrm{x}=12$
Age of son 3 yrs ago $=x-3=12-3=9 \mathrm{yrs}$

S121. Ans.(d)

Sol. let each invested Rs P
Let Jaddu invested for X years
ATQ, $\frac{P \times 10 \times X}{100}=P\left(1+\frac{10}{100}\right)^{2}-P$
$\frac{X}{10}=\frac{21}{100}$
$X=2.1$ years

S122. Ans.(d)

Interest earned in $1^{\text {st }}$ half of the year $=30000 \times \frac{1}{2} \times \frac{20}{100}$ =Rs 3000
Similarly, during 2 nd half, interest earned $=10 \%$ of $33000=$ Rs 3300
During $2^{\text {nd }}$ year, interest earned
$=(30000+3000+3300) \times \frac{20}{100}=$ Rs 7260
Total interest earned at the end of 2 yrs
$=3000+3300+7260=$ Rs 13560

S123. Ans.(a)

Sol. Let the investment in A, B and C be $2 \mathrm{x}, \mathrm{x}$ and 3 x respectively.
Cumulative interest rate for A, B and C is
$10 \% \times 2,\left(5+5+\frac{25}{100}\right) \%,\left(3+3+\frac{9}{100}\right) \%$
$=20 \%, 10.25 \%, \quad 6.09 \%$
ATQ, $2 x \times \frac{20}{100}+x \times \frac{10.25}{100}+\frac{3 x \times 6.09}{100}=6852$
$\Rightarrow \frac{68.52 x}{100}=6852$
$\Rightarrow \mathrm{x}=10000$
So, Total amount invested is 60000 Rs.

S124. Ans.(b)

Sol. Interest received after 3 yrs is Rs 7560 at simple interest
Interest received after 1 yrs on S.I $=\frac{7560}{3}$
=Rs 2520
Rate of interest $(r)=\frac{2520}{16800} \times 100$
=15\%
Interest received on C.I at $(\mathrm{r}+5) \%$ after 2 yrs
$=16800\left[\left(1+\frac{20}{100}\right)^{2}-1\right]$
$=16800\left(\frac{36}{25}-1\right)$
$=16800\left(\frac{11}{25}\right)$
=Rs 7392

S125. Ans.(a)

Sol. ATQ,
$\frac{x \times 14 \times 3}{100}-\frac{x \times 10 \times 3}{100}=120$
$\frac{(42-30) x}{100}=120$
$x=R s .1000$
Required answer $=5 x=5 \times 1000=$ Rs. 5000

S126. Ans.(c)
Sol. Let total work be 30 units (LCM of 15, 30, 10)
Efficiency Arshad $=\frac{30}{15}=2 \frac{\text { units }}{\text { day }}$
Sanjay $=\frac{30}{30}=1 \frac{\text { units }}{\text { day }}$
Arshad, Sanjay, Vidya $=\frac{30}{5}=6$ units/day

S127. Ans.(b)

Sol. 1 day wage of 4 men \& 3 children $=\frac{600}{3}=$ Rs. 200
Let efficiency of a man \& a child be M \& C units/day respectively
Equating total work,
$(4 M+3 C) \times 3=M \times 15$
$M: C=3: 1$ (this is also ratio of daily wage)
Daily wage of a man $=\frac{3}{15} \times 200=$ Rs. 40

S128. Ans.(b)

Sol. Let efficiency of a man \& a boy be M \& B units/day respectively
$5 B \times 20=10 M \times 8$
$\frac{M}{B}=\frac{5}{4}$
Total work $=(4 \times 5+4 \times 4) \times 3=108$ units
Work done by 4 boys in 3 days $=4 \times 4 \times 3=48$ units
Amount earned by boys for their contribution $=$
$\frac{48}{108} \times 540=$ Rs 240

S129. Ans.(d)

Sol. Let, Abhishek can complete the work alone in ' x ' days.
Then, Satish can complete the work alone in $\mathrm{x} \times \frac{100}{75}$
$=\frac{4 \mathrm{x}}{3}$ days
Bhavya can complete the work alone in $\frac{4 x}{3} \times \frac{1}{2}$ days $=\frac{2 x}{3}$
days
ATQ,
$\frac{3}{4 x}+\frac{3}{2 x}=\frac{3}{20}$
$\Rightarrow \frac{1+2}{4 \mathrm{x}}=\frac{1}{20}$
$\Rightarrow \mathrm{x}=15$
Bhavya and Abhishek together can complete the work in $\frac{15 \times 10}{15+10}=\frac{150}{25}=6$ days.

S130. Ans.(d)

Sol. P and Q together can complete $\frac{2}{3}$ rd of the total work in 8 days
Total work can be completed in 12 days by P and Q working together
Let the time taken by Q alone to complete the work be ' b ' days
$\frac{1}{30}+\frac{1}{b}=\frac{1}{12}$
$\frac{1}{b}=\frac{1}{12}-\frac{1}{30}$
$\frac{1}{b}=\frac{5-2}{60}$
$\frac{1}{b}=\frac{3}{60}$
Q alone can complete the total work in 20 days
Time taken to complete $\frac{3}{4}$ th work by Q alone
$=\frac{3}{4} \times 20=15$ days

S131. Ans.(d)

Sol. side of square $=\sqrt{25}=5 \mathrm{~cm}$
Since non-parallel sides are equal,

S132. Ans.(e)

Sol. let side of square be x cm
$\frac{x^{2}}{10 x}=\frac{4}{5}$
$x=8 \mathrm{~cm}$
Diagonal of square $=\sqrt{2} x=8 \sqrt{2} \mathrm{~cm}$

S133. Ans.(c)

Sol. Let r and h be radius and height of cylinder respectively.
Now, r + h = 23 cm
ATQ,
$2 \pi r(r+h)=368 \pi$
$\Rightarrow \mathrm{r}=8$ and $\mathrm{h}=15$
Now, radius of cone $=8 \mathrm{~cm}$.
ATQ,
$\pi r(l+r)=200 \pi$
$\Rightarrow \mathrm{l}=17 \mathrm{~cm}$
Volume of cone $=\frac{1}{3} \pi \times 8 \times 8 \times 15$
$=320 \pi \mathrm{~cm}^{3}$

S134. Ans.(d)
Sol. Let radius of smaller \& larger circles be $r_{1} \& r_{2}$ respectively.
$2 \pi r_{1}=132$
$\mathrm{r}_{1}=21 \mathrm{~m}$
$2 \pi r_{2}=176 \Rightarrow r_{2}=28 \mathrm{~m}$.
\therefore Required difference
$=\pi\left(\mathrm{r}_{2}^{2}-\mathrm{r}_{1}^{2}\right)$
$=\frac{22}{7} \times 49 \times 7$
$=1078 \mathrm{~m}^{2}$

S135. Ans.(b)

Sol. let side of 4 squares be a,b,c \& d cm respectively
$a=\frac{24}{4}=6 \mathrm{~cm}$
$b=\frac{32}{4}=8 \mathrm{~cm}$
$c=\frac{40}{4}=10 \mathrm{~cm}$
$d=\frac{48}{4}=12 \mathrm{~cm}$
Perimeter of new square $=a+b+c+d=6+8+10+$ $12=36 \mathrm{~cm}$
$4($ side $)=36$
side $=9 \mathrm{~cm}$
Required area $=$ side $^{2}=9^{2}=81 \mathrm{~cm}^{2}$
S136. Ans.(d)
Sol. Let ratio of P's investment and Q's investment be x:y
Therefore, profit will be shared in the ratio $4 x: 5 y$
Given, $\frac{4 x}{4 x+5 y} \times 75000=15000$
$\frac{4 x}{4 x+5 y}=\frac{1}{5}$
$20 \mathrm{x}=4 \mathrm{x}+5 \mathrm{y}$
$16 \mathrm{x}=5 \mathrm{y}$
$y: x=16: 5$
S137. Ans.(d)
Sol. A : B : C
Amount $2500 \quad 4500 \quad 2400$
Time period $12 \quad 12 \quad 7$
Reqd. ratio 25 : 45 : 14
Required difference in profit share of B and C=(45-14)× $\frac{16800}{84}$
=Rs 6200
S138. Ans.(a)
Sol. Ratio of investment of Arun, bhavya \& Ashu
$4 \times 3: \mathrm{x} \times 3: 4 \times \mathrm{x}$
Ratio of profit
24×12 : $24 \times 3 \mathrm{x}: 24 \times 4 \mathrm{x}$
ATQ -
$\frac{4 x}{7 x+12}=\frac{1850}{3700}$
$8 \mathrm{x}=7 \mathrm{x}+12$
$\mathrm{x}=12$

S139. Ans.(d)

A : B : C
$7000 \times 2 \quad 6000 \times 2 \quad 8500 \times 2$
$+\quad+\quad+$
$9000 \times 1 \quad 7500 \times 1 \quad 6500 \times 1$
$=46$: 39 47
B's profit share $=26400 \times \frac{39}{132}$
= Rs 7800

S140. Ans.(e)

Sol. Let $\mathrm{x}=$ Amount invested by ' A ' and $\mathrm{y}=$ amount invested by 'B'
Ratio of profit of $\mathrm{A}, \mathrm{B} \& \mathrm{C}=(x \times 12):(y \times 9):(12000 \times 3)$ $=4 x: 3 y: 12000$
ATQ,
$\frac{4 x}{12,000}=\frac{48}{24} \Rightarrow x=6,000$
and $\frac{3 y}{12,000}=\frac{48}{24} \Rightarrow y=8,000$
Required sum $=6,000+8,000=$ Rs. 14,000

S141. Ans.(b)
Sol. Let speed of current be x kmph
ATQ,
$\frac{10.8}{(21-x)}=\frac{36}{60}$
$\Rightarrow \mathrm{x}=3 \mathrm{kmph}$
Now, downstream speed $=21+3=24 \mathrm{kmph}$
Total time taken $=\frac{60}{24}$
= 2 hours 30 minutes

S142. Ans.(b)

Sol. Downstream speed $=\frac{36}{4}=9 \mathrm{~km} / \mathrm{hr}$
Speed of the current $=\frac{1}{3} \times 9=3 \mathrm{~km} / \mathrm{hr}$
Speed of the boat $=9-3=6 \mathrm{~km} / \mathrm{hr}$
Now, Uptream speed $=6-3=3 \mathrm{~km} / \mathrm{hr}$
Total time taken $=\frac{78}{3}=26 \mathrm{hr}$

S143. Ans.(c)

Sol. let speed of stream be $\mathrm{xkm} / \mathrm{hr}$ Speed of boat in still water $=4 \mathrm{x} \mathrm{km} / \mathrm{hr}$
$\frac{220}{4 x+x}+\frac{108}{4 x-x}=20$
$\frac{220}{5 x}+\frac{108}{3 x}=20$
$\frac{44}{x}+\frac{36}{x}=20$
$\frac{80}{x}=20$
$\mathrm{x}=4 \mathrm{~km} / \mathrm{hr}$
speed of stream $=4 \mathrm{~km} / \mathrm{hr}$
speed of boat in still water $=4 \mathrm{x}=16 \mathrm{~km} / \mathrm{hr}$
Reqd. sum $=\frac{40}{20}+\frac{48}{12}=2+4=6 \mathrm{hrs}$

S144. Ans.(e)

Let speed of stream be u km/hr
According to the question,
$\frac{54}{15+u}+\frac{54}{15-u}=7.5$
$\frac{18}{15+u}+\frac{18}{15-u}=\frac{5}{2}$
$\frac{18(15-u+15+u)}{(15+u)(15-u)}=\frac{5}{2}$
$216=225-u^{2}$
$u^{2}=9$
$\mathrm{u}=3 \mathrm{~km} / \mathrm{hr}$
Time required to travel 48 km in upstream $=\frac{48}{15-3}=\frac{48}{12}=4 \mathrm{hrs}$

S145. Ans.(d)

Sol. In still water, the speed of boat $=\frac{105}{6}=17.5 \mathrm{~km} / \mathrm{hr}$.
And let the rate of stream be $\mathrm{V} \mathrm{km} / \mathrm{hr}$
According to the question,
$\frac{V}{(17.5-V)}=\frac{9}{26}$
$26 \mathrm{~V}=157.5-9 \mathrm{~V}$
$35 \mathrm{~V}=157.5$
$\mathrm{V}=4.5 \mathrm{~km} / \mathrm{hr}$
Total time taken to travel 364 km roundtrip
$=\frac{364}{(17.5-4.5)}+\frac{364}{(17.5+4.5)}$
$=\frac{364}{13}+\frac{364}{22}$
$=44.54 \mathrm{hrs}$
$=45 \mathrm{hrs}$. (approx.)

S146. Ans.(a)

Sol. Expenditure of A = 2400 Rs.
Now, $4 \rightarrow 2400$
$1 \rightarrow 600$
Average expenditure of A, B and C
$=\frac{600 \times(4+2+5)}{3}=2200 \mathrm{Rs}$.

S147. Ans.(d)

Sol. Let no. of questions he attempted correct be x.
ATQ, $3 x-0.5(250-x)=435$
$3.5 x-125=435$
$\mathrm{x}=160$

S48. Ans. (d)

Sol. Sum of ages of all the 20 members $=20 \times 25=500$
Sum of ages of first 18 members $=18 \times 24=432$
Sum of ages of last 2 members $=500-432=68$
\therefore Average age $=\frac{68}{2}=34$

S149. Ans.(d)

Sol. let Sanjay spends Rs x.
Expenditure of Nawaz =x-500 Rs
ATQ, $x+x-500=8500$
$\mathrm{X}=\mathrm{Rs} 4500$
Expenditure of Manoj $=9000-(4500-500)=$ Rs 5000
Average expenditure of Sanjay \& Irfan $=\frac{100}{90} \times 4500=$ Rs 5000
Expenditure of Irfan $=10000-4500=$ Rs 5500
Required average $=\frac{5000+5500}{2}=$ Rs 5250
S150. Ans.(e)
Sol. required average cost
$=\frac{200+2 \times 80+3 \times 95}{8}=\frac{645}{8}=$ Rs 80.625

S151. Ans.(a)

Sol. total students in a section = students failed in both + students passed in half yearly + students passes in annual - students passed in both
total students in section $B=15+30+25-20=50$

S152. Ans.(d)

Sol. students failed in both exams in all sections
$=10+15+20=45$
Students passed in both exams in all sections $=20+20+25=65$
Required $\%=\frac{65-45}{45} \times 100=44 \frac{4}{9} \%$

S153. Ans.(c)

Sol. students passed in only one examination in all sections
$=(30+40-20)+(30+25-20)+(35+30-25)$
$=125$
Required average $=\frac{125}{3}=41.67$

S154. Ans.(e)

Sol. Total students in section C $=20+35+30-25=60$ Required $\%=\frac{20}{60} \times 100=33.33 \%$

S155. Ans.(b)

Sol. students in section A=10+30+40-20=60
Students in section B $=15+30+25-20=50$
Students in section C $=20+35+30-25=60$
Section A \& C have same no. of students

S156. Ans.(c)

Sol. Total marks scored by lokesh in physics, chemistry and maths together $=150 \times \frac{80}{100}+150 \times \frac{76}{100}+150 \times \frac{84}{100}$ $=120+114+126=360$
Total marks scored by Amit in physics, chemistry and maths together $=150 \times \frac{70}{100}+150 \times \frac{66}{100}+150 \times \frac{58}{100}$ $=105+99+87=291$
Required difference $=360-291=69$

S157. Ans.(d)
Sol. Total marks scored by Siddharth in all the subjects $=150 \times \frac{48}{100}+150 \times \frac{72}{100}+150 \times \frac{88}{100}+100 \times \frac{70}{100}+$ $100 \times \frac{86}{100}$
$=72+108+132+70+86=468$
overall percentage marks scored by Siddharth $=\frac{468}{650} \times 100$ = 72\%

S158. Ans.(a)

Sol. Total marks scored by Ritesh in all the subjects $=150 \times$ $\frac{76}{100}+150 \times \frac{82}{100}+150 \times \frac{64}{100}+100 \times \frac{72}{100}+100 \times \frac{94}{100}$
$=114+123+96+72+94=499$
Total marks scored by Aakash in all the subjects $=150 \times \frac{50}{100}$
$+150 \times \frac{64}{100}+150 \times \frac{78}{100}+100 \times \frac{65}{100}+100 \times \frac{75}{100}$
$=75+96+117+65+75=428$
Required difference $=499-428=71$

S159. Ans.(c)

Sol. marks scored in physics subject by all the given five students together $=150 \times \frac{66}{100}+150 \times \frac{64}{100}+150 \times \frac{72}{100}$
$+150 \times \frac{76}{100}+150 \times \frac{82}{100}$
$=99+96+108+114+123=540$
Average marks scored in physics $=\frac{540}{5}=108$

S160. Ans.(b)

Sol. Total marks scored by Aakash, Siddharth and Lokesh in English $=100 \times \frac{65}{100}+100 \times \frac{70}{100}+100 \times \frac{75}{100}$
$=65+70+75=210$
Total marks scored by Amit, Aakash and Lokesh in
maths $=150 \times \frac{70}{100}+150 \times \frac{50}{100}+150 \times \frac{80}{100}$
$=105+75+120=300$
Required percentage $=\frac{210}{300} \times 100=70 \%$
Solutions (161-165): Let the number of pen and pencil sold by A be $7 x$ and $5 x$ respectively and that of by B be $3 y$ and $2 y$ respectively.
Total numbers of pen and pencil sold by A and B
$=7 \mathrm{x}+5 \mathrm{x}+3 \mathrm{y}+2 \mathrm{y}$
$12 x+5 y=874-128$
$12 x+5 y=746$
Now,
$7 \mathrm{x}=3 \mathrm{y} \times \frac{110}{100}$
$\mathrm{x}=\frac{33 y}{70}$
$12 x+5 y=746$
$12 \times \frac{33 y}{70}+5 y=746$
$396 y+350 y=746 \times 70$
$y=\frac{746 \times 70}{746}=70$
$\mathrm{x}=\frac{33 y}{70}=\frac{33 \times 70}{70}=33$

	A	B	C
Pen	$7 \mathrm{x}=7 \times 33$ $=231$	$3 \mathrm{y}=3 \times 70$ $=210$	$5 \mathrm{z}=\frac{128}{8} \times 5$ $=80$
Pencil	$5 \mathrm{x}=5 \times 33$ $=165$	$2 \mathrm{y}=2 \times 70$ $=140$	$3 \mathrm{z}=\frac{128}{8} \times 3$ $=48$

S161. Ans.(c)
Sol. Total amount received by selling all pen by $A=231 \times$ 20 = Rs 4620
Total amount received by selling all pencil by $A=165 \times 10$ =Rs 1650
Total amount earned by selling all pen \&pencil by A $=4620+1650=$ Rs 6270

S162. Ans.(b)

Sol. Total pens sold by A and B together $=231+210=441$
Total pencil sold by B and C together $=140+48=188$
Required ratio $=\frac{441}{188}=441: 188$

S163. Ans.(d)

Required average $=\frac{231+210+80}{3}=\frac{521}{3}=173.67$

S164. Ans.(a)

number of pens sold by stationary B after increase of 20 $\%=210 \times \frac{120}{100}=252$
number of pencil sold by stationary C after increase of 25
$\%=48 \times \frac{125}{100}=60$
Required sum of pen and pencil $=252+60=312$

S165. Ans.(c)

Total pens sold by A ,B and C together $=231+210+80$
$=521$
Total pencils sold by A , B and C together $=165+140+48$

= 353

Required difference $=521-353=168$
Solutions (166-170): Person who eat only vanilla
$=100-(40+10+30)=20$
Person who eat butterscotch and chocolate only
$=130-(40+40+30)=20$
Person who eat only chocolate
$=210-(40+40+30+10+20+20)=50$
Person who eat chocolate $=50+20+30+10=110$

S166. Ans.(a)
Sol. Number of people who eat only chocolate=50

S167. Ans.(a)

Sol. A.T.Q
People eating chocolate and butterscotch only $=20$
People eating only butterscotch $=40$
\therefore required percentage $=\frac{20}{40} \times 100=50 \%$

S168. Ans.(d)

Sol. people eating only vanilla $=20$
People eating all 3 icecreams $=30$
Required difference $=30-20=10$

S169. Ans.(c)

Sol. people eating chocolate $=110$
People eating vanilla $=100$
\therefore required percentage $=\frac{110}{100} \times 100=110 \%$

S170. Ans.(b)

Sol. people eating only chocolate and only butterscotch together $=50+40=90$
People eating only vanilla $=20$
\therefore required ratio $=9: 2$

S171. Ans.(d)

Sol. required difference = average marks scored by Student A - Average marks scored by Student B $\therefore \frac{70+90+60+55}{4}-\frac{50+80+75+65}{4}=\frac{5}{4}=1.25$

S172. Ans.(c)

Sol. marks obtained by student A in Math and Computer together $=70+90=160$
marks obtained by student B in Science and English
together=75+65 =140
required ratio $=160: 140=8: 7$

S173. Ans.(b)

Sol. Overall percentage marks of Student B = $\frac{50+80+75+65}{400} \times 100=67.5$

S174. Ans.(c)

Sol. Marks Scored by Student A in Math =70
Marks Scored by Student B in Science and English
$=75+65=140$
Required $\%=\frac{70}{140} \times 100=50 \%$

S175. Ans.(b)

Sol. A.T.Q, passing marks $=\frac{40}{100} \times 120=48$
\therefore required difference $=80-48=32$

S176. Ans.(c)

Sol. amount received by Rohit
$=4000+\frac{4000 \times 10 \times 2}{100}=R s .4800$

S177. Ans.(e)

Sol. interest amount received by Karan
$=\frac{8000 \times 10 \times 2}{100}=$ Rs. 1600
Interest amount received by Mahesh
$=\frac{6000 \times 12 \times 4}{100}=R s .2880$
Required $\%=\frac{2880-1600}{1600} \times 100=80 \%$

S178. Ans.(d)

Sol. total interest amount received by Anurag \& Rohit together $=\frac{4000 \times 16 \times 4}{100}+\frac{4000 \times 10 \times 2}{100}=R s .3360$

S179. Ans.(a)

Sol. interest received by Karan (SI) $=\frac{8000 \times 10 \times 2}{100}=$ Rs. 1600 Interest received by Karan (CI)
$=8000\left(1+\frac{10}{100}\right)^{2}-8000=$ Rs. 1680
Required value $=1680-1600=R s .80$

S180. Ans.(e)

Sol. Interest received by Karan $=\frac{8000 \times 10 \times 2}{100}=$ Rs. 1600
Interest received by Anurag $=\frac{4000 \times 16 \times 4}{100}=R s .2560$
Interest received by Mahesh $=\frac{6000 \times 12 \times 4}{100}=R s .2880$
Interest received by Rohit $=\frac{4000 \times 10 \times 2}{100}=$ Rs 800
Clearly, Mahesh had received highest interest
S181. Ans.(d)
Sol. let his total expenditure be Rs. x in July
Savings $=\frac{40}{100} \times x \times \frac{1}{2}=$ Rs. $\frac{x}{5}$
ATQ, $x+\frac{x}{5}=12000$
$x=$ Rs. 10000
Expenditure on food $=\frac{30}{100} x=\frac{30}{100} \times 10000=$ Rs. 3000

S182. Ans.(a)

Sol. let salary \& savings be Rs. x \& Rs. y respectively for
March \& June
Expenditure in March $=$ expenditure in June $=R s .(x-y)$
Expenditure on travel in March $=$ Rs. $\frac{35}{100} \times(x-y)$
Expenditure on food in June $=R s . \frac{40}{100} \times(x-y)$
Required $\%=\frac{35}{40} \times 100=87.5 \%$

S183. Ans.(e)

Sol. let total expenditure in May \& July is Rs. 5x \& Rs. 4x respectively.
Required ratio $=\left(\frac{35}{100}\right) \times 5 x:\left(\frac{30}{100}\right) \times 4 x=35: 24$

S184. Ans.(c)

Sol. expenditure in March $=\frac{90}{100} \times 5000=R s .4500$
Expenditure on rent in March $=\frac{40}{100} \times 4500=R s .1800$
Expenditure in July $=\frac{90}{100} \times 8000=R s .7200$
Expenditure on rent in July $=\frac{40}{100} \times 7200=R s .2880$
Required average $=\frac{1800+2880}{2}=R s .2340$
S185. Ans.(c)
Sol. let equal expenditure be Rs. x.
Required $\%=\frac{\frac{35}{100} x-\frac{30}{100} x}{\frac{30}{100} x} \times 100=\frac{5}{30} \times 100=16.67 \%$
S186. Ans.(c)
Sol. total Samsung mobiles
$=2400+4400+1800+2800=11400$
S187. Ans.(e)
Sol. required answer
$=(2300+2500)-(1800+2800)=200$

S188. Ans.(d)

Sol. required $\%=\frac{1800}{2700} \times 100=66 \frac{2}{3} \%$

S189. Ans.(a)

Sol. required ratio
$=(2300+2500+3500):(2400+4400+2800)$
$=83: 96$

S190. Ans.(e)

Sol. Nokia $(2017)=\frac{2500-2300}{2300} \times 100=8.7 \%$
Nokia (2018) $=\frac{3500-2500}{2500} \times 100=40 \%$
Samsung $(2019)=\frac{2800-1800}{1800} \times 100=55.55 \%$
Nokia $(2019)=\frac{2700-3500}{3500} \times 100=23 \%$ (decrease)
Samsung $(2017)=\frac{4400-2400}{2400} \times 100=83.33 \%$
Clearly, Samsung in 2017 shows maximum production increase

S191. Ans.(a)
Sol. no. of valid votes cast in village B
$=10000 \times \frac{25}{100} \times \frac{80}{100} \times \frac{90}{100}=1800$
S192. Ans.(d)
Sol. total valid votes cast in village C
$=10000 \times \frac{20}{100} \times \frac{90}{100}=1800$
Let winning candidate got $\mathrm{x} \%$ of votes cast and Losing
Candidate got ($\mathrm{x}-12$) \% of votes cast.
Now, ATQ
$x+x-12=100$
$x=56 \%$
Votes obtained by losing candidate $=\frac{44}{100} \times 1800=792$

S193. Ans.(e)

Sol. average registered voters of B,C,D
$=\frac{(25+20+15)}{100} \times \frac{10000}{3}=2000$
S194. Ans.(c)
Sol. votes cast -
$A=10000 \times \frac{20}{100} \times \frac{70}{100}=1400$
B $=10000 \times \frac{25}{100} \times \frac{65}{100}=1625$
$\mathrm{D}=10000 \times \frac{15}{100} \times \frac{80}{100}=1200$
$\mathrm{E}=10000 \times \frac{20}{100} \times \frac{75}{100}=1500$
Maximum voters cast their votes in village B.
S195. Ans.(b)
Sol. average number of registered voters from village A \& $C=\frac{10000}{2} \times \frac{20+20}{100}=2000$
Average no. of registered voters from village B, D \& E
$=\frac{10000}{3} \times \frac{(25+15+20)}{100}=2000$
Required $\%=\frac{2000}{2000} \times 100=100 \%$

S196. Ans.(c)

Sol. Total number of males employees in company E
$=5400 \times \frac{22}{100} \times \frac{2}{3}=792$
Total number of female employees in company D
$=5400 \times \frac{20}{100} \times \frac{3}{5}=648$
Required ratio $=\frac{792}{648}=11: 9$

S197. Ans.(a)

Sol. Total number of male employees in company A=5400 $\times \frac{18}{100} \times \frac{2}{3}=648$
Total number of female employees in company E $=5400 \times \frac{22}{100} \times \frac{1}{3}=396$
Required percentage $=\frac{648}{396} \times 100=163.63 \%$
=164\% (approx.)

S198. Ans.(b)

Sol. total male employees in company B,C and D together
$=5400 \times \frac{28}{100} \times \frac{3}{4}+5400 \times \frac{12}{100} \times \frac{1}{3}+5400 \times \frac{20}{100} \times \frac{2}{5}$
$=1134+216+432$
$=1782$
Required percentage $=\frac{1782}{5400} \times 100=33 \%$

S199. Ans.(d)

Sol. Total female employees in all the 5 companies together
$=5400 \times \frac{18}{100} \times \frac{1}{3}+5400 \times \frac{28}{100} \times \frac{1}{4}+5400 \times \frac{12}{100} \times \frac{2}{3}+$
$5400 \times \frac{20}{100} \times \frac{3}{5}+5400 \times \frac{22}{100} \times \frac{1}{3}$
$=324+378+432+648+396$
$=2178$

S200. Ans.(e)
Sol. Central angle of total employees from company B and D together $=(28+20) \times \frac{360}{100}=172.8^{\circ}$

TEST SERIES
 ENGLISH
 NABARD 2022
 Assistant Manager PHASE-I

