

Adda 247

| <b>Directions (1-15):-</b> What will come in place of question mark (?) in the following questions.                                                                                   | <b>Q8.</b> $73823 - 34156 + 4756 + 6758 - 9849 = 41499 - 160 - ?$                                                                                                                                       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Q1. $\sqrt{5776} - \sqrt{1444} + \sqrt{729} = 43 + ?$<br>(a) 25<br>(b) 20<br>(c) 26<br>(b) 24                                                                                         | (a) 5<br>(b) 7<br>(c) 4<br>(d) 8<br>(e) 6                                                                                                                                                               |
| (d) 24<br>(e) 22                                                                                                                                                                      | $\mathbf{Q9.} \frac{5599}{1331} \times \frac{3773}{2036} \times \frac{88}{49} = ? - 6^2$                                                                                                                |
| <b>Q2.</b> 78 ×26÷6 +1262= 1311 + (?) <sup>2</sup><br>(a) 17<br>(b) 22<br>(c) 15<br>(d) 13<br>(e) 19                                                                                  | (a) 44<br>(b) 46<br>(c) 48<br>(d) 50<br>(e) 52                                                                                                                                                          |
| Q3.1484÷28 + 1462÷34 -12×7=?<br>(a) 12<br>(b) 14<br>(c) 18<br>(d) 16<br>(e) 20                                                                                                        | Q10. $84 \times \frac{1}{4} \div 21^2 + ? = \frac{7}{147} \times 21 - \frac{20}{21}$<br>(a) 2<br>(b) 1<br>(c) 0<br>(d) 3<br>(e) 4                                                                       |
| <b>Q4.</b> 42.5×15 +37.5× 25= 1420 + ?<br>(a) 145<br>(b) 165<br>(c) 155<br>(d) 170<br>(e) 185<br><b>Q5.</b> 2450 +3760 -3830 =6000 - ?<br>(a) 3610                                    | <b>Q11.</b> $\sqrt{\frac{3840}{60} + \frac{1440}{40} - \frac{1330}{70}} = ?$<br>(a) 10<br>(b) 9<br>(c) 8<br>(d) 7<br>(e) 11<br><b>Q12.</b> $25 \times 18 + \frac{4200}{40} - \frac{525}{105} = 740 - ?$ |
| <ul> <li>(b) 3620</li> <li>(c) 3580</li> <li>(d) 3600</li> <li>(e) 3520</li> </ul>                                                                                                    | <ul> <li>(a) 200</li> <li>(b) 220</li> <li>(c) 190</li> <li>(d) 170</li> <li>(e) 150</li> </ul>                                                                                                         |
| $\mathbf{Q6.} \begin{pmatrix} \frac{4}{5}of25\\ 64 \end{pmatrix} \div \left(432 - 20^2 + \frac{3}{7}of\ 21\right) \times (82) = ?of\ \frac{1}{64}$ (a) 50 (b) 45 (c) 35 (d) 30 (e) 40 | <b>Q13.</b> 3845+4380+2640 - 5965 = (?) <sup>2</sup><br>(a) 75<br>(b) 60<br>(c) 80<br>(d) 70<br>(e) 72                                                                                                  |
| <b>Q7</b> . 55% of 900 + 70% of 1050 = ?% of 3000<br>(a) 41<br>(b) 42<br>(c) 43<br>(d) 44<br>(e) 45                                                                                   | <b>Q14.</b> 400 ÷ 20 × 35 + 6666 ÷ 33+ ? = 1100<br>(a) 180<br>(b) 198<br>(c) 195<br>(d) 205<br>(e) 200                                                                                                  |

| Adda 247 |  |
|----------|--|
| BANKERS  |  |



| <b>Q15.</b> 28× 14.5+1680÷15+445=1000 -?                                                                                                                                                                                                        | <b>022.</b> $\frac{177.8 + ?}{24.89 \times 41.87 - 15.98 \% of 400} = (31.89)^2$                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| (a) 27                                                                                                                                                                                                                                          | 7.98                                                                                                           |
| (h) 27                                                                                                                                                                                                                                          | (a) 96                                                                                                         |
| (U) 57                                                                                                                                                                                                                                          | (b) 126                                                                                                        |
| (c) 47                                                                                                                                                                                                                                          | (c) 156                                                                                                        |
| (d) 50                                                                                                                                                                                                                                          |                                                                                                                |
| (a) 40                                                                                                                                                                                                                                          | (d) 196                                                                                                        |
| (e) 40                                                                                                                                                                                                                                          | (e) 84                                                                                                         |
|                                                                                                                                                                                                                                                 |                                                                                                                |
| <b>Directions (16-30):</b> what approximate value will come in                                                                                                                                                                                  | <b>023</b> $\sqrt{1205.06} \pm \sqrt{2024.03} \pm \sqrt{1520.07} = \sqrt{2} = 12.03.06$ of                     |
| place of question (?) mark:                                                                                                                                                                                                                     | $Q23. \sqrt{12}3.90 \pm \sqrt{20}24.93 \pm \sqrt{13}20.97 \pm \sqrt{2}.93 \times \sqrt{0}01$                   |
| France of American (1)                                                                                                                                                                                                                          | 899.98                                                                                                         |
|                                                                                                                                                                                                                                                 | (a) 5                                                                                                          |
| <b>Q16.</b> 129.89% of 1199.82 + 1249.78 ÷ 49.98 × 30.012 = ?                                                                                                                                                                                   | (h) 7                                                                                                          |
| (a) 2210                                                                                                                                                                                                                                        | (c) 13                                                                                                         |
| (h) 2380                                                                                                                                                                                                                                        |                                                                                                                |
| (a) 2210                                                                                                                                                                                                                                        | (d) 16                                                                                                         |
| (1) 2510                                                                                                                                                                                                                                        | (e) 9                                                                                                          |
| (d) 2530                                                                                                                                                                                                                                        |                                                                                                                |
| (e) 2460                                                                                                                                                                                                                                        | <b>024</b> 240 00 + <sup>55.98</sup> ×239.89 + <b>5</b> (10.00)3                                               |
|                                                                                                                                                                                                                                                 | $Q24.349.89 + \frac{13.86}{13.86} + \sqrt{2} = (10.98)^{3}$                                                    |
| <b>017</b> 1550 $\sqrt{1(0.01)}$ (2.00) <sup>2</sup> $\cdots$ 20.00 2.0/ of 500.02                                                                                                                                                              | (a) 196                                                                                                        |
| $\mathbf{V17}$ , 155.9 - $\mathbf{V100.01}$ + $(2.90)^{-}$ × 39.89 = $(.9001599.92)$                                                                                                                                                            | (b) 441                                                                                                        |
| (a) 62                                                                                                                                                                                                                                          | (3) 111                                                                                                        |
| (b) 78                                                                                                                                                                                                                                          | (C) 400                                                                                                        |
| (c) 84                                                                                                                                                                                                                                          | (d) 529                                                                                                        |
|                                                                                                                                                                                                                                                 | (e) 625                                                                                                        |
| (d) 52                                                                                                                                                                                                                                          |                                                                                                                |
| (e) 68                                                                                                                                                                                                                                          |                                                                                                                |
|                                                                                                                                                                                                                                                 | <b>Q25.</b> $31.96 \times 34.89 + \sqrt{960.89 + 18.98\%}$ of ?=                                               |
| <b>010</b> $\sqrt{00.00 \times 2001} \times (70.01 \times 17.01) 2 \times (511.00) 1/2$                                                                                                                                                         | <mark>39.98</mark> % of 3304.98                                                                                |
| <b>Q18.</b> $\sqrt{80.98 \times 36.01 + 6/9.81 \div 1/.01} = (+(511.98)^{1/3})$                                                                                                                                                                 | (a) 800                                                                                                        |
| (a) 86                                                                                                                                                                                                                                          | (b) 700                                                                                                        |
| (b) 78                                                                                                                                                                                                                                          |                                                                                                                |
| (c) 94                                                                                                                                                                                                                                          | (c) 900                                                                                                        |
| (1) 52                                                                                                                                                                                                                                          | (d) 1000                                                                                                       |
| (d) 52                                                                                                                                                                                                                                          | (e) 950                                                                                                        |
| (e) 66                                                                                                                                                                                                                                          |                                                                                                                |
|                                                                                                                                                                                                                                                 | 026 1202 011 . 52 00 . 455 000 . 2246 011 1 011 2                                                              |
| <b>010</b> 1500 850% of 130 80 $\pm$ 2 % of 1500 82 $\pm$ 72 01 x                                                                                                                                                                               | $Q26. 1/82.011 \div 53.99 + 455.889 - 2346.011 \times 1.011 = ?$                                               |
| $Q19.1399.0370 \text{ of } 139.09 + 190 \text{ of } 1399.03 = 72.01 \times 1000000000000000000000000000000000$                                                                                                                                  | × 2.93                                                                                                         |
| 39.81                                                                                                                                                                                                                                           | (a) -629                                                                                                       |
| (a) 20                                                                                                                                                                                                                                          | (h) - 619                                                                                                      |
| (h) 32                                                                                                                                                                                                                                          | (a) 620                                                                                                        |
| (c) 60                                                                                                                                                                                                                                          | (1) 629                                                                                                        |
|                                                                                                                                                                                                                                                 | (d) 619                                                                                                        |
| (d) 50                                                                                                                                                                                                                                          | (e) -609                                                                                                       |
| (e) 40                                                                                                                                                                                                                                          |                                                                                                                |
|                                                                                                                                                                                                                                                 | <b>027</b> (574.99 + 7511.11 - 2768.01) $\pm$ (76.1 $\times$ 0.09 +                                            |
| <b>020</b> $(17012)^2 + (2189)^2 + (801)^2 + 2 - 1749821 -$                                                                                                                                                                                     | $\sqrt{2}$ (377.77 - 1311.11 - 2100.71) + (70.1 × 0.70 +                                                       |
| $\mathbf{v} = 0 \cdot (1 \cdot 0 \cdot 1 2) \cdot (2 \cdot 0 \cdot 1) \cdot (0 \cdot 0 \cdot 1) \cdot (1 - 1 \cdot 1 \cdot 1 \cdot 0 \cdot 1 1 = 0 \cdot 0 \cdot 0 \cdot 1 \cdot 0 \cdot 1 = 0 \cdot 0 \cdot 0 \cdot 1 \cdot 0 \cdot 0 \cdot 1$ | $6/4.9/6 - 342.001) = \sqrt{?}$                                                                                |
| 820.01 + 2210.01                                                                                                                                                                                                                                | (a) 529                                                                                                        |
| (a) 2208                                                                                                                                                                                                                                        | (h) 49                                                                                                         |
| (b) 2256                                                                                                                                                                                                                                        | (c) 160                                                                                                        |
| (c) 2601                                                                                                                                                                                                                                        |                                                                                                                |
|                                                                                                                                                                                                                                                 | (a) 289                                                                                                        |
| (a) 2303                                                                                                                                                                                                                                        | (e) 729                                                                                                        |
| (e) 2373                                                                                                                                                                                                                                        |                                                                                                                |
|                                                                                                                                                                                                                                                 | $\left[\left(\sqrt{20,10,0,0,00}\right), (0,0,0)^{\frac{1}{2}}\right] = 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0$ |
| <b>021.</b> 307.89 + 671.93 – 39.87% of ? + 79.89% of 354.93 =                                                                                                                                                                                  | <b>Q28.</b> $[(\sqrt{3843.9} \times 9.09) \div (26.99)_3] \times 23.012 = ?^2 +$                               |
| (77 07)2                                                                                                                                                                                                                                        | 336.97                                                                                                         |
| (2/.0/)                                                                                                                                                                                                                                         | (a) 22                                                                                                         |
| (a) 1200                                                                                                                                                                                                                                        |                                                                                                                |
| (b) 1175                                                                                                                                                                                                                                        | (b) 23                                                                                                         |
| (c) 1225                                                                                                                                                                                                                                        | (c) 27                                                                                                         |
| (d) 1250                                                                                                                                                                                                                                        | (d) 37                                                                                                         |
| (u) 1250                                                                                                                                                                                                                                        | (a) 42                                                                                                         |
|                                                                                                                                                                                                                                                 | (8) 40                                                                                                         |





| <b>029</b> $\sqrt{(95.99) \times 12.01 \div 17.9 \pm 25.899 - 9.011} - $                                    | <b>036.</b> 1229.99 + 2120.09 - 3049.987 =?                                 |
|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| $\chi(0.0,0) \times 12.01 \times 17.9 + 20.099 \times 0.011 =$                                              | (a) 300                                                                     |
| (64.9-?)% of 35.88                                                                                          | (b) 100                                                                     |
| (a) 50                                                                                                      | (b) 100                                                                     |
| (b) 2E                                                                                                      | (c) 200                                                                     |
| (D) 55                                                                                                      | (d) 500                                                                     |
| (c) 30                                                                                                      | (a) 400                                                                     |
| (d) 40                                                                                                      | (e) 400                                                                     |
| (a) 20                                                                                                      |                                                                             |
| (e) 20                                                                                                      |                                                                             |
|                                                                                                             | <b>Q37.</b> $\sqrt{(99.99 + 104.99 \times 5 = ? \div 8.989)}$               |
| <b>030</b> 119 $\times \sqrt{224.89} + 1212.09 - (1053.11 \pm 8.9) = 2$                                     |                                                                             |
|                                                                                                             | (a) 55                                                                      |
| (a) 1,275                                                                                                   | (b) 15                                                                      |
| (b) 1,225                                                                                                   | (c) 25                                                                      |
| (c) 1 175                                                                                                   | (d) 25                                                                      |
|                                                                                                             | (u) 55                                                                      |
| (d) 1,255                                                                                                   | (e) 45                                                                      |
| (e) 1,245                                                                                                   |                                                                             |
|                                                                                                             | <b>038</b> $3599 \times 498 - 119999 \div 799 = ?$                          |
|                                                                                                             |                                                                             |
| <b>Directions (31-45):</b> What approximate value will come                                                 | $(a)$ $z_0$                                                                 |
| in place of question mark (?) in the following questions.                                                   | (b) 50                                                                      |
| (You are not expected to find the exact value)                                                              | (c) 40                                                                      |
| (100 are not expected to find the exact value)                                                              | (4) 30                                                                      |
|                                                                                                             | (a) 10                                                                      |
| <b>031.</b> $42.022\%$ of $350.09 - 28.04\%$ of $399.999 = ?$                                               | (e) 10                                                                      |
| (a) 40                                                                                                      |                                                                             |
| (a) 40                                                                                                      | $039.?^{2}+60\% of 239.99 = 55\% of 320.02 + 3.98$                          |
| (b) 35                                                                                                      | (2) 8                                                                       |
| (c) 45                                                                                                      |                                                                             |
| (d) = 0                                                                                                     | (0) 6                                                                       |
| (u) 50                                                                                                      | (c) 4                                                                       |
| (e) 30                                                                                                      | (d) 16                                                                      |
|                                                                                                             | (e) 14                                                                      |
| <b>022</b> $\sqrt{(122.00 + 465.05) + 11.00} + 2 - 240.02 + 1.000$                                          |                                                                             |
| $Q32.\sqrt{(123.09 + 465.05) \div 11.99 + ? = 240.02 \div 1.989}$                                           |                                                                             |
| (a) 93                                                                                                      | <b>Q40.</b> 524.90 + 125.05 =? × 9.99                                       |
| (h) 143                                                                                                     | (a) 85                                                                      |
|                                                                                                             | (h) 75                                                                      |
| (C) 133                                                                                                     | (0) $75$                                                                    |
| (d) 113                                                                                                     | (C) 65                                                                      |
| (e) 123                                                                                                     | (d) 55                                                                      |
| (0) 125                                                                                                     | (e) 45                                                                      |
|                                                                                                             |                                                                             |
| <b>Q33.</b> $(15.99)^2 - 14.04 \times 8.99 + ? = 154.999$                                                   |                                                                             |
| (a) 30                                                                                                      | <b>Q41.</b> $\sqrt{144.04 \times 15\%}$ of $120.09 = ? - 54.99 \times 3.03$ |
| (h) 4 <b>F</b>                                                                                              | (a) 401                                                                     |
| (0) 45                                                                                                      | (h) 431                                                                     |
| (c) 35                                                                                                      | (a) 241                                                                     |
| (d) 20                                                                                                      |                                                                             |
| (a) 25                                                                                                      | (d) 471                                                                     |
| (e) 25                                                                                                      | (e) 381                                                                     |
|                                                                                                             |                                                                             |
| <b>034.</b> $62.02\%$ of $249.99 - 19.99\%$ of $105.05 - ? = 110$                                           | <b>04.2</b> 12.03 $\times$ 7 $\pm$ 2 - 20.0306 of 240.00                    |
| (a) 24                                                                                                      | $Q+2.13.03 \times 7+1 = 30.03700 J 349.99$                                  |
| (a) 24                                                                                                      | (a) 14                                                                      |
| (b) 16                                                                                                      | (b) 18                                                                      |
| (c) 28                                                                                                      | (1) 8                                                                       |
|                                                                                                             | (d) 20                                                                      |
| (d) 34                                                                                                      | (u) 20                                                                      |
| (e) 20                                                                                                      | (e) 6                                                                       |
|                                                                                                             |                                                                             |
| <b>035</b> $44.98\%$ of 220.09 $\pm$ 20.020% of 160.06 $\pm$ 22 $\pm$ 2.00                                  | <b>Q43.</b> 32.01% of 600.02 – 19.99% of 400.04+?=                          |
| <b>Q33.</b> $\pm$ <b>4.</b> 50 70 0 <i>j</i> 220.05 $\pm$ 50.05 70 0 <i>j</i> 100.00 - $\frac{1}{2}$ + 2.99 | $859.99 \div 2$                                                             |
| (a) 32                                                                                                      | (a) 250                                                                     |
| (b) 28                                                                                                      |                                                                             |
| (-)                                                                                                         | (b) 258                                                                     |
| (L) 12                                                                                                      | (-) 200                                                                     |
| (1) 00                                                                                                      | (C) 288                                                                     |
| (d) 22                                                                                                      | (c) 288<br>(d) 318                                                          |
| (d) 22<br>(e) 18                                                                                            | (c) 288<br>(d) 318<br>(c) 228                                               |

| Adda 247<br>BANKERS 200 Quantitative Antitud                           | le Questions for LIC AAQ                       |
|------------------------------------------------------------------------|------------------------------------------------|
| $\begin{array}{c} - & - & - & - & - & - & - & - & - & - $              | <b>051</b> 810 820 832 868 1012 1732 6052      |
| $\sqrt{44} \cdot \frac{1}{20.09} + \frac{1}{39.99} - \sqrt{2} = 10.01$ | (a) 6052                                       |
| (a) 36                                                                 | (b) $910$                                      |
| (b) 16                                                                 | (0) 010                                        |
| (c) 4                                                                  | (C) 808                                        |
| (d) 64                                                                 | (d) 832                                        |
| (a) 100                                                                | (e) 1732                                       |
| (e) 100                                                                |                                                |
|                                                                        | <b>Q52.</b> 1024, 350, 832, 508, 704, 604, 640 |
| <b>Q45.</b> $8.98 \times 60.02 - 19.99^2 + 10.01\%$ of $130.09 = ?$    | (a) 1024                                       |
| (a) 123                                                                | (b) 640                                        |
| (b) 93                                                                 | (c) 704                                        |
| (c) 153                                                                | (d) 350                                        |
| (d) 173                                                                | (e) 508                                        |
| (e) 113                                                                |                                                |
| (c) 115                                                                | <b>053</b> , 190, 210, 266, 358, 486, 646, 850 |
| Directions (4( (0) Is such a fith as a matting a mathematical          | (a) 646                                        |
| <b>Directions (46-60):</b> In each of these questions a number         | (h) 850                                        |
| series is given. In each series only one number, if any, is            | (0) 000                                        |
| wrong. Find out the wrong number.                                      | (1) 400                                        |
|                                                                        | (d) 190                                        |
| <b>046.</b> 28, 14, 14, 22, 42, 105, 315                               | (e) 210                                        |
| (a) 28                                                                 |                                                |
| (h) 42                                                                 | <b>Q54.</b> 15, 50, 160, 370, 709, 1208, 1904  |
| (b) 42<br>(-) 215                                                      | (a) 15                                         |
| (c) 315                                                                | (b) 50                                         |
| (d) 22                                                                 | (c) <b>3</b> 70                                |
| (e) 105                                                                | (d) 1208                                       |
|                                                                        | (e) 15                                         |
| <b>Q47.</b> 5, 7, 13, 25, 47, 75, 117                                  |                                                |
| (a) 5                                                                  | <b>055.</b> 120, 170, 251, 367, 522, 720, 990  |
| (b) 7                                                                  | (a) 120                                        |
| (c) 75                                                                 | (b) 990                                        |
| (d) 117                                                                | (c) 522                                        |
| (u) 117<br>(-) 47                                                      | (d) 367                                        |
| (e) 47                                                                 | (a) 251                                        |
|                                                                        |                                                |
| <b>Q48.</b> 288000, 24000, 3600, 300, 50, 12.5, 6.25                   | OFC FE 120 210 229 E17 760 1000                |
| (a) 24000                                                              | <b>(30.</b> 55, 120, 210, 556, 517, 700, 1090  |
| (b) 50                                                                 | (a) 120<br>(b) 1000                            |
| (c) 12.5                                                               | (b) 1090                                       |
| (d) 3600                                                               | (c) /60                                        |
| (a) 6 25                                                               | (d) 55                                         |
| (e) 0.23                                                               | (e) 338                                        |
|                                                                        |                                                |
| <b>Q49.</b> 120, 125, 136, 149, 166, 185, 208                          | BILINGUAL                                      |
| (a) 120                                                                |                                                |
| (b) 166                                                                | DANTEZ                                         |
| (c) 149                                                                | BANK                                           |
| (d) 185                                                                |                                                |
| (e) 208                                                                | DDIME                                          |
|                                                                        | FINIME                                         |
| <b>NED</b> 2015 214 106 250 125 241 2                                  | TEST DACK                                      |
| <b>UJU.</b> 20J, 214, 100, 230, 123, 341, -2                           | ILOT PAOK                                      |
| (a) 200                                                                | 1200+ TOTAL TESTS                              |
| (D) 214                                                                |                                                |
| (c) 250                                                                |                                                |
| (d) 125                                                                | @ 7670 Only                                    |
| (e) -2                                                                 | W (0/9 Only                                    |

www.bankersadda.com | www.sscadda.com | www.careerpower.in | Adda247 App





|                                                           | le Questions for Lic AAO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>057.</b> 110. 140. 240. 261. 365. 380. 492             | <b>067.</b> I. $x^2 - 2x - 15 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| (2) 240                                                   | $\frac{1}{10} \frac{1}{10} \frac$ |
|                                                           | 11. $y = 15y + 50 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| (b) 380                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (c) 492                                                   | <b>068.</b> I. $10x^2 + 19x + 7 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| (d) 140                                                   | $U = 10^{2} + 16^{2} + 12 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| (a) 110                                                   | $11.5y^2 + 10y + 12 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (e) 110                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                           | <b>069.</b> I. $x^2 - 20x + 75 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <b>Q58.</b> 105, 106, 123, 154, 197, 255, 327             | $U_{1}v_{1}^{2} + 10v_{1} + 94 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| (a) 197                                                   | 11. $y + 19y + 64 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $(h) 10^{-1}$                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (0) 105                                                   | <b>070.</b> I. $x^2 - 9x - 22 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| (c) 154                                                   | $U_{1} v^{2} = 17v + 66 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| (d) 255                                                   | 11. $y = 17y + 00 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| (e) 123                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (0) 120                                                   | <b>071.</b> I. $4x^2 + 19x + 15 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                           | $11.8v^2 + 10v + 3 - 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <b>Q59.</b> 1, 329, 638, 911, 1130, 1277, 1334            | 11.0y + 10y + 5 = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| (a) 1                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (h) 1334                                                  | <b>Q72.</b> I. $x^2 - 18x + 56 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| (b) 155 I<br>(c) 011                                      | $11 y^2 + 4y - 32 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| (c) 911                                                   | 11. $y + 4y - 52 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (d) 1277                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (e) 638                                                   | <b>Q73.</b> I. $x^2 + 14x - 72 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                           | $11 y^2 - 13 + 36 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| <b>OCO</b> 2100 2126 1000 2216 1740 2640 1244             | 11 y 10 + 00 = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <b>Q60.</b> 2100, 2136, 1990, 2316, 1740, 2640, 1344      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (a) 2100                                                  | <b>Q74.</b> I. $x^2 - 9^2 = 12^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (b) 1990                                                  | $II v^3 = 3375$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (c) 2316                                                  | n. y = 5575                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| (3) 1740                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (d) 1/40                                                  | $\frac{5}{x^2}$ $\frac{3}{x^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (e) 2640                                                  | $Q75.1.\frac{1}{28} = \frac{1}{7}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                           | $11 11 x \pm (7 \times 6) = 97$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Direction (61-75): Civen below in each question two       | $11.11y + (7 \times 0) = 97$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Direction (01-75). Given below in each question two       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| quadratic equations are given. Please solve each quantity | <b>Directions (76-90):</b> In each of the following questions,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| and compare both of them and answer accordingly from      | two equations (I) and (II) are given Solve the equations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| the following options.                                    | two equations (1) and (11) are given. Solve the equations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                           | and mark the correct option:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                           | (a) if $x > y$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| (b) y> x                                                  | (h) if $x > y$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| (c) $x \ge y$                                             | $(b)$ if $x \in y$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| (d) $x < y$                                               | (c) If x <y< td=""></y<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (a) $x = y$ or No relation can't be established           | (d) if $x \leq y$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (e) x -y of No relation can t be established.             | (e) if x = v or no relation can be established between x and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                           | (c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <b>Q61.</b> I. $2x^2 + x - 6 = 0$                         | у.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| II. $v^2 + 6v + 9 = 0$                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                           | Q76.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $0(2 + x^2) + 4x + 4 = 0$                                 | $\int r^2 - 22r + 72 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <b>Q62.</b> 1. $x^2 - 4x + 4 = 0$                         | 1.1 + 2.1 + 2.0 = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| II. $y^2 - 10y + 16 = 0$                                  | $11. y^2 + 11y + 30 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <b>063</b> $1 2x^2 + 7x + 6 = 0$                          | 077.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $Q_{03} = 1.2\lambda + 7\lambda + 0 = 0$                  | 1 - 2 - 22 + 120 = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $11.\ 3y^2 + 11y + 10 = 0$                                | $1.x^{2} - 23x + 120 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                           | II. $y^2 - 17y + 70 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <b>064.</b> I. $x^2 - 2x - 24 = 0$                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $11 y^2 + 12y + 26 = 0$                                   | 078                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 11. y = 12y + 50 - 0                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                           | $1. x^2 - 15x + 54 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <b>Q65.</b> I. $4x^2 + 11x + 6 = 0$                       | II. $y^2 + 10y - 96 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $II_{v}^{2} + 10v + 25 = 0$                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 11.y + 10y + 20 = 0                                       | 070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                           | Q79.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| <b>Q66.</b> 1. $4x^2 - 20x + 25 = 0$                      | I. x <sup>3</sup> +440=2168                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| II. $5y^2 - 6y - 8 = 0$                                   | $II.v^2 - 23 = 121$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |





#### Q80.

I.  $x^2 + 4x - 12 = 0$ II.  $y^2 - 9y + 20 = 0$ 

#### Q81.

I.  $x^2 - 25x + 100 = 0$ II.  $y^2 - 27y + 110 = 0$ 

#### Q82.

I.  $x^2 = 289$ II.  $y = \sqrt{289}$ 

#### Q83.

I.  $x^2 + 12x + 32 = 0$ II  $y^2 + 7y + 12 = 0$ 

#### Q84.

I.  $3x^2 + 16x + 20 = 0$ II.  $y^2 + 14y + 48 = 0$ 

#### Q85.

I.  $x^2 + x - 72 = 0$ II.  $y^2 + 13y + 42=0$ 

## Q86.

I.  $x^2 + 5x + 6 = 0$ II.  $y^2 - 9y + 14 = 0$ 

#### Q87.

I.  $x^2 - 14x + 45 = 0$ II.  $y^2 + 2y - 35 = 0$ 

#### Q88.

I.  $x^2 + 11x + 18 = 0$ II.  $y^2 + 6y + 8 = 0$ 

#### Q89.

I.  $x^2 + 5x = -6$ II.  $y^2 - 15y = 16$ 

#### Q90.

I. 2x + 3y = 3II. 3x + y = 8

**Directions (91-95):** Pie chart given below shows distribution of passenger travelling from Haryana roadways to different district. Read the data carefully and answer the questions.



**Q91.** No. of passenger who are travelling to Gurgaon are approximately how much percent less than no. of passenger travelling to Sonipat and Ambala together? (a) 75%

- (b) 78%
- (c) 50%
- (d) 65%
- (e) 90%

**Q92.** What is the average no. of passengers who are travelling to Hisar, Panipat and Rewari?

(a) 3025 (b) 2075 (c) 3375 (d) 3425 (e) 3075

**Q93.** Passenger travelling to Hisar district are how many less than passenger travelling to Ambala?

(a) 2525
(b) 2575
(c) 2425
(d) 2475
(e) None of these.

**Q94.** If ratio of men to women who are travelling to Ambala and Gurgaon are 18:5 and 7:8 respectively, find ratio between men travelling to Gurgaon and women travelling to Ambala?

(a) 5:7
(b) 7:18
(c) 7:5
(d) 14:15
(e) 15:8

6





**Q95.** If fair of a ticket for Rewari is Rs.75 and fair for Panipat is  $33\frac{1}{3}\%$  more than that of Rewari, find difference between total revenue generated from both district (in Rs.)? (a) 33750 (b) 22025 (c) 34250 (d) 35750

(e) 25075

**Directions (96-100):** Paragraph given below gives information of literate and illiterate population out of total population of three cities i.e. A, B and C. Read the paragraph carefully and answer the following questions.

Total population of city A and B are 22000 and 16000 respectively. Total literate population of city B is 6000 which is 6.25% of total population of city C. Ratio of literate to illiterate population in city A and C is 5:6 and 2:1 respectively. 40% of literate population in each city is graduate.

**Q96.** Literate population from city B are what percent of illiterate population of city A?

(a) 100%

- (b) 75%
- (c) 50%
- (d) 40%
- (e) 60%

**Q97.** What is the ratio between graduate population of city C and total population of city B?

- (a) 5:8
- (b) 3:5
- (c) 5:3
- (d) 8:5
- (e) 1:3

**Q98.** What is the difference between graduate population of city B and illiterate population of city C?

- (a) 29600
- (b) 28400
- (c) 28600
- (d) 29400
- (e) None of these.

Q99. Population which is literate but ungraduated from city A are what percent graduate population of city B?
(a) 500%
(b) 250%
(c) 300%
(d) 120%

**Q100.** If ratio of male to female in graduate population from city C is 9:7, find difference between graduate male from city C to literate but ungraduated from city B?

(a) 7200
(b) 14400
(c) 10800
(d) 12000
(e) 11800

**Directions (101-110):** Bar graph given below shows quantity of five different products (i.e. rice, pulse, wheat, sugar and salt) sold (in kg) by a shopkeeper and table shows total revenue (in Rs.) generated by selling these individual products.



| Name of product | Total revenue (in Rs.) |  |
|-----------------|------------------------|--|
| Rice            | 2200                   |  |
| Pulse           | 3750                   |  |
| Wheat           | 900                    |  |
| Sugar           | 1200                   |  |
| Salt            | 600                    |  |

**Q101.** Cost price of per kg rice is how much more or less than per kg selling price of sugar when rice is sold at 60% profit?

- (a) Rs. 4 more (b) Rs. 5 less
- (c) None of these.
- (d) Rs. 4 less
- (e) Rs. 5 more

Q102. If 3 kg of wheat and 2 kg of salt is mixed, then what will be the selling price per kg of such mixture?
(a) Rs.15
(b) Rs. 17
(c) Rs. 14
(d) Rs. 12
(e) Rs. 16

(e) 375%





**0109.** Total number of student playing Cricket of college

L and M together are what percent more/less than total

number of student playing Hockey of college K and M

**Q110.** If total number of students in college K in year

2015 is increased by 20% percent with respect to year

2014 and the ratio of student playing Football, Cricket and

Hockey becomes 5:2:3 respectively then find the

average number of students playing football in same

Direction (111-115): Given bar graph shows total

number of confirmed cases of COVIND-19 and number of

deaths in four different countries. Study the bar graph

carefully and answer the questions given below.

college K in year 2014 and 2015?

Q103. Total revenue generated from wheat is what **Q107.** If  $14\frac{2}{7}$ % of student playing Cricket of college N left percent of difference between total revenue generated playing cricket and started playing Football in same from rice and salt? college then find the ratio of number of student playing (a) 40.25% (b) 56.25% football of college N and M together to the number of (c) 64.25% student playing Cricket of college K and N together? (d) 45.50% (a) 3 : 2 (e) 25.75% (b) 1:2 **Q104.** If cost price of per kg pulse is Rs. 60, find profit (c) 1:1 earned on selling 40 kg of pulse (in Rs.)? (d) 1:3 (a) 450 (e) 2 : 1 (b) 600 (c) 800 **Q108.** Average no. of students playing Hockey of college (d) 750 (e) 300 K, L and O is how much more than average number of students playing football of college K, L & M? Q105. What is the average quantity of rice, pulse and (a) 120 wheat sold by shopkeeper? (b) 50 (a) 45 kg (c) 80 (b) 55 kg (d) 40 (c) 60 kg (d) 40 kg (e) 100 (e) 50 kg

together?

(a)  $32\frac{1}{2}\%$ 

(b) 17

(c) 12

(d)  $23\frac{2}{3}\%$ 

(e)  $7\frac{9}{10}\%$ 

(a) 640

(b) 525

(c) 625

(d) 545

(e) 454

**Directions (106-110):** Study the following bar graph and answer the questions that follow.

Given below is the bar graph which shows the number of students playing three different games in five colleges in year 2014.



**Q106.** If  $11\frac{1}{9}\%$  of students playing Hockey of college L are females then, number of males playing Hockey from same college is what percent of average number of students playing Hockey from college M & O?

(a)  $88\frac{8}{9}\%$ (b)  $63\frac{1}{3}\%$ (c)  $68\frac{8}{9}\%$ (d)  $72\frac{2}{7}\%$ (e)  $82\frac{2}{3}\%$ 





**Q111.** For which country mortality rate is lowest among the given four countries.

- (a) Italy
- (b) USA
- (c) Spain
- (d) China
- (e) USA and China

**Q112.** Total confirmed cases in USA is what percent more than total deaths in Italy.

- (a) 1200%
- (b) 1350%
- (c) 2100%
- (d) 1900%
- (e) 1500%

**Q113.** Find out the ratio between mortality rate of Spain to that of China?

- (a) 19: 11
- (b) 43:14
- (c) 15:7
- (d) 14:9
- (e) 13: 5

**Q114.** Total death in all four countries together is what percent of total confirmed cases in China?

(a) 59.375%
(b) 62%
(c) 55%
(d) 66.66%

(e) 75%

**Q115.** If number of confirmed cases in China is increased by 25% and mortality rate remains same, what will be the new number of total deaths in China.

(a) 4400
(b) 4500
(c) 4600
(d) 5200
(e) 5000

**Direction (116 – 120):** Given below the bar graph shows the quantity of six different items (in kg) purchased by a person during the lockdown period. Read the data carefully and answer the questions.



**Q116.** If the sum of the price of one kg sugar and one kg salt is Rs.84 and the ratio of price of one kg of sugar and one kg of salt is 11: 10. Then, find the difference between the total price of Sugar and salt purchased by man?

(a) Rs. 220 (b) Rs. 240 (c) Rs. 260 (d) Rs. 300 (e) Rs. 280

**Q117.** If the total price of tea is Rs. 900 and that of rice is Rs. 1500, then find the price of one kg tea is what percent more than that of rice?

- (a) 0%
- (b) 20% (c) 5%
- (d) 10%
- (e) 15%

**Q118.** If the price of one kg of pulse and one kg of oil is Rs. 63 and Rs. 42 respectively, then find the ratio of the total price of the pulse to the total price of oil? (a) 13:25 (b) 1:2 (c) 3:5 (d) 18:25 (e) 12:13







Q119. The total quantity of sugar and salt purchased together by man is what percent of the total quantity of rice and pulse together purchased by man? speed? (a)  $87\frac{1}{2}\%$ (a) 70 minutes (b)  $83\frac{1}{3}\%$ (b) 72 minutes (c) 74% (c) 75 minutes (d) 92% (d) 90 minutes (e) 84 minutes (e)  $64\frac{1}{2}\%$ **Q120.** If the price of one kg salt, one kg rice, and one kg oil is Rs. 56, Rs. 32 and Rs. 40 respectively, then find out the total price of oil, salt, and rice purchased by man? (a) Rs. 2000

(b) Rs. 2800

(c) Rs. 2200

(d) Rs. 1800

(e) Rs. 2600

**Q121.** Train A crosses a 230m long platform in 29 seconds and train B crosses a 150m long platform in 24 seconds. Train B which is 450m long crosses train A in 160 seconds, while running in the same direction. Find how much time will the train A take to cross a 50m long bridge?

(a) 16 seconds

- (b) 22 seconds
- (c) 20 seconds
- (d) 17 seconds
- (e) 25 seconds

**Q122.** A 950 metres long train-A crosses another train-B running in same direction in 16 seconds. If the ratio of speed of these trains is in the ratio 17:13 respectively, find out the length of train B?

(a) 1000 meter

- (b) 1900 meter
- (c) 1600 meter
- (d) 1100 meter
- (e) Can't be determine

**Q123.** A train crosses a tunnel which is half of its length with a speed of 144 km/hr. in ½ min, then find the time in which it will cross another train which is double of its length and standing on platform in opposite direction with 60% of its initial speed ?

(a) 120 sec.

- (b) 90 sec.
- (c) 150 sec.
- (d) 100 sec. (e) 180 sec.

,

**Q125.** The speed of boat in downstream is 'X-4' kmph and ratio of time taken by a boat to cover a certain distance in upstream to downstream is 2 : 1. If boat takes 5 hours to Cover 40 km in Upstream, then find the value of X?

(a) 16

(b) 20

(c) 22

(d) 24

(e) 18

**Q126.** Distance between two cities P and Q is 900 km. Car A and Car B can cover the distance between P and Q in 'X' hours and (X + 4) hours respectively. If Car B and Car A start from city P at 6.00 am and 8.00 am respectively and both Cars meet at 10.30 am, then find the distance between P and the point where both the cars meet?

(a) 425 km (b) 475 km (c) 450 km

| (C) 450 KIII |  |
|--------------|--|
| (d) 500 km   |  |
| (e) 400 km   |  |
|              |  |

**Q127.** Downstream speed of a boat is  $33\frac{1}{3}\%$  more than its upstream speed and the speed of the boat in still water is 15 km/h more than the speed of the stream. Find the total time taken by boat to travel 120 km in upstream?

- (a) 7 hr (b) 8 hr
- (c) 9 hr
- (d) 5 hr
- (e) 10 hr

**Q128.** Amit goes to office from his home by bike at the speed of 30 kmph and he comes back to his home from office by bike at the speed of X kmph. If average speed for whole journey is 33 kmph, then find the value of 'X' (nearest to two decimal places)?

(a) 35.56 km/hr (b) 36.00 km/hr (c) 36.67 km/hr (d) 32.50 km/hr (e) 34.50 km/hr





Q129. A train 'X' starts from station P at 8 am and reaches<br/>station Q at 4 pm. Another train 'Y' started from Q at the<br/>same time at which 'X' started and reaches 'P' at 3 pm.Q1<br/>him<br/>cu<br/>(a)<br/>(b)then find the time at which both the trains crossed each<br/>other.(a)<br/>(b)(a)<br/>(c)(a)<br/>(c)

(a) 11 : 44 am

- (b) 11 : 48 am
- (c) 11 : 36 am
- (d) 12 : 44 pm
- (e) 11 : 50 am

**Q130.** A car covered a certain distance at a certain speed in a fixed time. If car had moved 9 kmph slower, it would have taken 2 hours more and if it had moved 5 kmph faster, it would have taken 48 min less. Find the distance covered by car?

- (a) 300 km
- (b) 360 km
- (c) 320 km
- (d) 400 km
- (e) 450 km

**Q131.** Downstream speed of a boat is  $57\frac{1}{7}\%$  more than the upstream speed of a boat. If the speed of the stream is 8 km/hr., then find the total time taken by the boat to cover 176 km in downstream and 70 km in upstream.

- (a) 7 hours
- (b) 6.5 hours
- (c) 7.5 hours
- (d) 6 hours
- (e) 8 hours

**Q132.** Speed of a boat in still water is 8 km/h. It takes 5 hours to go upstream and 3 hours downstream distance between two points. What is the speed of stream?

- (a) 4 km/h
- (b) 2 km/h
- (c) 3 km/h
- (d) 1 km/h
- (e) 2.5 km/h

**Q133.** A man covers half of total distance with 12 km/h and another half distance with 24km/h. Find his average speed.

(a) 12 km/h

- (b) 16 km/h
- (c) 10 km/h
- (d) 18 km/h (e) 6 km/h

**Q134.** A man can row 12 kmph in still water and it takes him 90 minutes to reach a place & return. If the speed of current is 4 kmph then how far is the place?

(a) 8 km
(b) 6 km
(c) 10 km
(d) 12 km
(e) 16 km

**Q135.** A man travels some journey on car with speed 60 kmph and some on cycle with speed 4 kmph. In return journey he come in train with speed 20 kmph and take equal time in both side journey. Find the ratio of the distance travel by car, cycle and train.

(a) 8:2:11
(b) 3:2:5
(c) 2:1:3
(d) 6:1:7
(e) None of these

**Q136.** A spherical ball of radius 16 cm is melted and casted into two cones of equal size and shape. If the base radius of the cone is 50% of the height of the cone. Find the height of each cone?

- (a) 36 cm
- (b) 18 cm
- (c) 32 cm
- (d) 20 cm
- (e) 16 cm

137. How many three letters words starting with S (with or without meaning) can be formed out of the letters of the word, "STRANGE", if repetition of letters is not allowed?

(a) 10

- (b) 15 (c) 12
- (d) 30
- (e) 18







Q138. If two dice are rolled simultaneously, find the probability of obtaining the sum (of numbers on these two dices) which is divisible by 2 or 3 but not by both?  $(a)^{\frac{1}{4}}$ (b)  $\frac{1}{2}$ (c)

- (d)
- $(e)\frac{1}{3}$

**Q139.** The area of a rectangular field having length 128m and breadth 16m is equal to the area of an isosceles rightangle triangle. If the radius of a sphere is  $12\frac{1}{2}\%$  of the hypotenuse of the isosceles right-angle triangle, then find out the total surface area of sphere?

- (a)  $512\pi m^2$
- (b)  $343\pi m^2$
- (c)  $580\pi m^2$
- (d)  $494\pi m^2$
- (e)  $500\pi m^2$

**Q140.** Gurdeep Chhabra joined 'Adda 247' with the work experience of 26 years due to which average work experience of all employees of 'Adda 247' was increased by one year. If initial average work experience of all employees of 'Adda 247' was five years, then find the new number of employees in 'Adda 247'?

(a) 23

- (b) 19
- (c) 25
- (d) 21
- (e) 27

Q141. If two dices are rolled together, then find the probability of getting a number of one dice greater than the number on other dice?

| (a)     | 3 |
|---------|---|
| (~)     | 4 |
| (h)     | 4 |
| $(\nu)$ | - |

- (c)
- (d)  $\frac{5}{6}$ (e)  $\frac{1}{2}$

**Q142.** The radius of a cylinder & a sphere is same, and ratio of height and radius of cylinder is 2 : 1. If the volume of sphere is 288  $\pi$  cm<sup>3</sup> then find the volume of cylinder?  $(in cm^3)$ 

(a) 438 π

- (b) 426 π
- (c) 420 π
- (d) 432 π (e) 444 π

Q143. How many cubes of 7.5 cm edge can be cut out from a cube of 45 cm edge?

- (a) 108
- (b) 72
- (c) 216 (d) 230
- (e) 256

Q144. How many Words can be formed from the letters of the word 'FLAGSHIP' so that the vowels always come together?

- (a) 5040
- (b) 10080

(c) 720

(d) 360 (e) 1440

Q145. One card is picked randomly from a pack of 52 playing cards. What is the probability that it would either be black queen or red king?

| (a) | 1<br>13 |  |
|-----|---------|--|
| (b) | 5<br>13 |  |
| (c) | 6<br>13 |  |
| (d) | 7<br>13 |  |
| (e) | 8<br>13 |  |
|     |         |  |

**Q146.** The ratio of height of a cylinder to its base radius is 2:1 respectively. If radius of a hemisphere is equal to the radius of the cylinder, then find the total surface area of cylinder is what percent more than total surface area of a hemisphere?

(a) 40% (b) 30% (c) can't be determined (d)  $33\frac{1}{3}\%$ (e) 50%

Q147. A bag contains 4 red, 3 orange and 2 green color balls. Find the probability of selecting two same color balls from the bag?

BANKERS

#### 200 Quantitative Aptitude Questions for LIC AAO



**Q148.** Find the probability of eight letters word that can Q151. Find the difference between the total number of be formed from the letters of the word 'BLASTING' so that complaints received on both days by all network operators? vowels always come together. (a) 40 (a)  $\frac{1}{4}$ (b) 50 (b)  $\frac{1}{5}$ (c) 60 (d) 70  $(c)\frac{1}{3}$ (e) 80 (d)  $\frac{\frac{10}{21}}{\frac{5}{14}}$ **0152.** Total number of complaints received by C & D together on Tuesday are what percent more/less than the number of complaints received by A & B together on Wednesday? **Q149.** The total surface area of a cylindrical vessel is 1232 (a) 62.50%  $cm^2$  and the height of vessel is 2 times more than the (b) 63.63% radius of vessel. Find the volume of cylindrical vessel? (c) 66.66% (a) 4312 cm<sup>3</sup> (d) 33.33% (b) 3201 cm<sup>3</sup> (e)11.11% (c) 3234 cm<sup>3</sup> (d) 3256 cm<sup>3</sup> **Q153.** Find the ratio of number of complaints received by B on both days to number of complaints received by A & D (e) 3333 cm<sup>3</sup> together on Wednesday? (a) 1:2 **Q150.** There are 5 red balls, 6 black balls and some green (b) 2:1 colored balls in a box. If the probability of choosing a (c) 1:1 black ball from the box is  $\frac{1}{3}$ , then find the number of green-(d) 5:4 (e) 4 : 5 colored ball in the box? (a) 5 **0154.** Find the total number of complaints received by C (b) 4 on Tuesday and Wednesday are approximately what (c) 6 percent of total number of complaints received on (d) 8 Tuesday by all network operators together? (e) 7 (a) 36% (b) 60% Directions (151-155): Line graph below shows the (c) 53% number of complaints received by four different network (d) 48%(e) 67% operators (A, B, C & D) on two different days Tuesday & Wednesday. Study the line graph carefully and answer the Q155. Find the ratio of complaints received by A,B & D following questions. together on Tuesday to total complaints received on 140 Wednesday by all network operators together? (a) 11: 17 120 (b) 21:31 (c) 18:19 100 (d) 29:32 (e) 51 : 43 80 60 Direction (156 - 160): In each of these questions a number series is given. In each series only one number is 40 wrong. Find out the wrong number. 20 Q156. 8, 4, 4, 10, 12, 30, 90 0

(a) 90 (b) 8 (c) 10 (d) 12 (e) 30

A

В

Tuesday

С

Wednesday

D

| Adda247                                                         | Adda 247                                                                                  |
|-----------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| BANKERS 200 Quantitative Aptitud                                | de Questions for LIC AAO                                                                  |
| <b>Q157.</b> 11, 16, 25, 41, 66, 102, 151                       | <b>Q164.</b> $3167 - 2881 - 11^2 = ? -\sqrt{1681}$                                        |
| (a) 41                                                          | (a) 316                                                                                   |
| (b) 66                                                          | (b) 416                                                                                   |
| (c) 11                                                          | (c) 286                                                                                   |
| (d) 151                                                         | (d) 326                                                                                   |
| (e) 25                                                          | (e) 206                                                                                   |
| <b>01E9</b> 21 25 20 29 10 27 19                                | <b>Q165.</b> 62.5% of $? -(5)^2 = 15^2$                                                   |
| (2) 10                                                          | (a) 200                                                                                   |
| (a) 10                                                          | (b) 100                                                                                   |
| (b) 27                                                          | (c) 500                                                                                   |
| (d) 25                                                          | (d) 400                                                                                   |
| (d) 23<br>(e) 20                                                | (e) 300                                                                                   |
|                                                                 | <b>Direction (166 – 170):</b> What approximate value should                               |
| <b>Q159.</b> 20, 28, 40, 56, 76, 104, 128                       | come in the place of question (?) mark in the following                                   |
| (a) 104                                                         | questions.                                                                                |
| (b) 128                                                         |                                                                                           |
| (c) 56                                                          | <b>Q166.</b> 24.01% of 449.98 + $?^2 = (16.01)^2 - \sqrt[3]{63.93}$                       |
| (d) 28                                                          | (a) 8                                                                                     |
| (e) 40                                                          | (b) 12                                                                                    |
|                                                                 | (c) 10                                                                                    |
| <b>Q160.</b> 1, 2, 6, 20, 88, 445, 2676                         | (d) 9                                                                                     |
| (a) 2                                                           | (e) 14                                                                                    |
| (b) 6                                                           | 01(7 2 × (44.01.0/ -5.750.01 + 110.01) 07.000/ -5                                         |
| (c) 88                                                          | Q167. (44.01% of /50.01 + 110.01) = 87.99% of                                             |
| (d) 2676                                                        | (2499.98)                                                                                 |
| (e) 20                                                          | $\begin{pmatrix} a \end{pmatrix} 2 \\ \begin{pmatrix} b \end{pmatrix} 4 \\ \end{pmatrix}$ |
|                                                                 | (c) 3                                                                                     |
| Direction (161 – 165): What will come in the place of           | (d) 5                                                                                     |
| question (?) mark in following the question:                    | (e) 6                                                                                     |
| <b>Q161.</b> $36 \div 4 \times 7 + 4 \times 4.5 = ?^2$          |                                                                                           |
| (a) 9                                                           | <b>Q168.</b> 4 <sup>?</sup> + 79.98% of 980.03 = 1039.99                                  |
| (b) 7                                                           | (a) 4                                                                                     |
| (c) 19                                                          | (b) 2                                                                                     |
| (d) 17                                                          | (c) 3                                                                                     |
| (e) 3                                                           | (d) 5                                                                                     |
|                                                                 | (e) None of these                                                                         |
| <b>Q162.</b> $\sqrt{1849} - \sqrt{256} = \sqrt{?} - \sqrt{144}$ | <b>0169</b> $\frac{1512.01}{100}$ + 49 99% of 488 - 70 03% of 399 99                      |
| (a) 1681                                                        | <b>Q109.</b> ? + 49.99% 01 400 = 70.03% 01 399.99                                         |
| (b) 1600                                                        | (a) 64<br>(b) 22                                                                          |
| (c) 1296                                                        | (D) 32<br>(c) 49                                                                          |
| (d) 1446                                                        | (d) 36                                                                                    |
| (e) 1521                                                        | (e) 42                                                                                    |
|                                                                 |                                                                                           |
| <b>Q163.</b> 250% of $30 - 175\%$ of $36 + 5^2 =?$              | <b>Q170.</b> ?% of 639.98 + 40.03% of 279.99 = (19.99) <sup>2</sup>                       |
| (a) 27                                                          | (a) 25                                                                                    |
| (b) 18                                                          | (b) 50                                                                                    |
| (c) 37                                                          | (c) 35                                                                                    |
| (d) 21                                                          | (d) 45                                                                                    |
| (e) 31                                                          | (e) 40                                                                                    |
| 14 www.bankersadda.com   www.s                                  | scadda.com   www.careerpower.in   Adda247 App                                             |





200 Quantitative Aptitude Questions for LIC AAO **Q174.** The difference between number of food products Direction (171-175): Read the given information carefully and answer the following questions. and dairy products produced in 2015 and 2018 together is 12000. Find the average of dairy products and Line graph shows production of three products in terms beverages produced by company in 2017? of percentage (out of total production in the year) in four (a) 30000 different years. (b) 22500 (c) 20000 ----- Food Products ----- Dairy products (d) 24000 Beverages (e) 25000 70 **Q175.** Find the total production in 2019 if there was an 60 increase of 20% in production in 2019 as compared to previous year given that number of dairy products in 50 2015 was 18000? 40 (a) 1,20,000 (b) 1,08,000 30 (c) 1,18,000 20 (d) 1,12,000 (e) None of these 10 0 Directions (176-180): What comes at the place of 2015 2016 2017 2018 question marks: **Q176.** 588, 640, ? 562, 614, 536, 1.Company produces three different products i.e. food, (a) 552 dairy and beverages. (b) 510 2.Total production of the company was same in all years. (c) 542 (d) 532Q171. In 2016, quantity of food products and dairy (e) 572 products produced is what percent more or less than that of beverages produced in year 2015 and 2016 together? 52, 102, 202, 402, ? **Q177.** 27, (a)  $13\frac{1}{3}\%$ (a) 912 (b) 892 (b) 15% (c) 922 (c)  $16\frac{2}{3}\%$ (d) 932 (d) 12.5% (e) 802 (e) 10% **Q178.** 17, 41, 91, 171, 293, ? Q172. If total number of products produced in year 2018 (a) 461 was 1,50,000. Find the difference between number of food (b) 481 (c) 471 products produced in 2017 and number of dairy products (d) 491 produced in 2015 and 2016 together? (e) 451 (a) 12000 (b) 18000 **TEST SERIES** (c) 12500 BILINGUAL (d) 10000 (e) 15000 Q173. Find the ratio of average of number of food LIC ADO products produced in 2015, 2017 and 2018 to total number of beverages produced in 2016 and 2017 PRE+MAINS together. (a) 3: 2 (b) 2: 3 (c) 3:5 70+ TOTAL TESTS (d) 5: 3

(e) 3: 4

| Adda 247 |  |
|----------|--|
| BANKERS  |  |



| DANKER           | ເວ  |     |      |       | 200 Q | uan |
|------------------|-----|-----|------|-------|-------|-----|
| <b>Q179.</b> 35, | 7,  | 42, | 8.4, | 50.4, | ?     |     |
| (a) 9.62         |     |     |      |       |       |     |
| (b) 8.76         |     |     |      |       |       |     |
| (c) 12.56        |     |     |      |       |       |     |
| (d) 10.08        |     |     |      |       |       |     |
| (e) 11.02        |     |     |      |       |       |     |
|                  |     |     |      |       |       |     |
| <b>Q180.</b> 24, | 60, | 90, | 225, | 337.  | 5, ?  |     |
| (a) 812.75       |     |     |      |       |       |     |
| (b) 843.75       |     |     |      |       |       |     |
| (c) 792.75       |     |     |      |       |       |     |
| (d) 875.75       |     |     |      |       |       |     |
| (e) 896.75       |     |     |      |       |       |     |

**Direction (181-185):** Line graph given below shows the selling prices (in rupees) of three types of Refrigerators (A, B & C) in four different years i.e. 2016, 2017, 2018, and 2019 for a shopkeeper



**Q181.** If a discount of 24% is given on refrigerator C sold in 2018 and ratio of MP to CP of C in 2018 is 5 : 3. then find the difference between the discount allowed and profit earned on C in 2018. (in rupees)

(a) 5000

- (b) 4000
- (c) 2000
- (d) 6000
- (e) 3000

Q182. Find out average selling price of refrigerator A in all the given years. (in rupees)(a) 16500(b) 22500(c) 18500

- (d) 19500
- (e) 25500

Q183. Find out the ratio between selling price of refrigerator C in 2018 and the selling price of refrigerator A in 2017?
(a) 20:21
(b) 18:25
(c) 19:25
(d) 23:27
(e) 16:25

**Q184.** In which year sum of selling price of all 3 type of the refrigerator was the lowest?

- (a) 2019 (b) 2016
- (c) 2017
- (d) 2018
- (e) 2016 and 2018

**Q185.** selling price of refrigerator A in year 2018 is approx. what percent of selling price of refrigerator B in 2019?

- (a) 78%
  (b) 88%
  (c) 82%
  (d) 72%
- (e) 93%

**Direction (186 – 190):** In each of these questions, two equations (I) and (II) are given. You have to solve both the equations and give the answers accordingly.

(a) if x>y (b) if x≥y

(c) if x<y

(d) if  $x \leq y$ 

(e) if x = y or no relation can be established between x and y.

**Q186.** I. x<sup>2</sup> – 14x + 48 = 0 II. y<sup>2</sup> – 17y + 72 =0

**Q187.** I. x<sup>2</sup> + 13x + 42 = 0 II . y<sup>2</sup> + 15y + 56 = 0

**Q189.**  $2x^2 + 9x + 9 = 0$  $y^2 + 28y + 192 = 0$ 

```
Q190. I \cdot x^2 - 9x + 20 = 0
II. y^2 - 6y + 9 = 0
```





| <b>Directions (191-195)</b> : What should come in place of the | <b>Q196.</b> If the sum of the price of one kg sugar and one kg       |  |  |
|----------------------------------------------------------------|-----------------------------------------------------------------------|--|--|
| question mark (?) in the following number series.              | salt together is Rs.84 and the ratio of price of one kg of            |  |  |
| <b>0101</b> 00 EE 7E 142E 2 962E                               | sugar and one kg of salt is 11: 10. Then, find the difference         |  |  |
| (2) 205                                                        | between the total price of Sugar and salt purchased by                |  |  |
| (a) 205<br>(b) 225                                             | man?                                                                  |  |  |
| (b) 525<br>(c) 470                                             | (a) Rs. 220                                                           |  |  |
| (d) 855                                                        | (b) Rs. 240                                                           |  |  |
| (e) 270                                                        | (c) Rs. 260                                                           |  |  |
|                                                                | (d) Rs. 300                                                           |  |  |
| <b>0192.</b> 5. 12. 39. 160. ?. 4836                           | (e) Rs. 280                                                           |  |  |
| (a) 850                                                        |                                                                       |  |  |
| (b) 750                                                        | <b>Q197.</b> If the total price of tea is Rs. 900 and that of rice is |  |  |
| (c) 800                                                        | Rs. 1500, then find the price of one kg tea is what percent           |  |  |
| (d) 805                                                        | more than that of rice?                                               |  |  |
| (e) 820                                                        | (a) 0%                                                                |  |  |
|                                                                | (b) 20%                                                               |  |  |
| <b>Q193.</b> 26, 36, 54, 80, 114, ?                            | (c) 5%                                                                |  |  |
| (a) 146                                                        | (d) 10%                                                               |  |  |
| (b) 133                                                        | (e) 15%                                                               |  |  |
| (c) 201                                                        |                                                                       |  |  |
| (d) 134                                                        | 0198 If the price of one kg of pulse and one kg of oil is Rs          |  |  |
| (e) 156                                                        | 62 and Ps. 42 respectively, then find the ratio of the total          |  |  |
| 0104 17 25 40 07 177 2                                         | by and KS. 42 respectively, then find the ratio of the total          |  |  |
| <b>Q194.</b> 17, 25, 49, 97, 177, ?                            | co 12.25                                                              |  |  |
| (a) $257$<br>(b) $247$                                         | (a) 13:25                                                             |  |  |
| (c) 358                                                        | (b) 1:2                                                               |  |  |
| (d) 292                                                        | (c) 3:5                                                               |  |  |
| (e) 279                                                        | (d) 18:25                                                             |  |  |
|                                                                | (e) 12:13                                                             |  |  |
| <b>Q195.</b> 21, 28, 42, 64, 95, ?                             |                                                                       |  |  |
| (a) 125                                                        | <b>Q199.</b> The total quantity of sugar and salt purchased           |  |  |
| (b) 158                                                        | together by man is what percent of the total quantity of              |  |  |
| (c) 142                                                        | rice and pulse together purchased by man?                             |  |  |
| (d) 136                                                        | (a) $87\frac{1}{2}$ %                                                 |  |  |
| (e) 164                                                        | (u) 07 3 /0<br>1                                                      |  |  |
|                                                                | (b) $83\frac{1}{3}\%$                                                 |  |  |

**Direction (196 – 200):** Given below the bar graph shows the quantity of six different items (in kg) purchased by a person during the lockdown period. Read the data carefully and answer the questions.



**Q200.** If the price of one kg salt, one kg rice, and one kg oil is Rs. 56, Rs. 32 and Rs. 40 respectively, then find out the total price of oil, salt, and rice purchased by man? (a) Rs. 2000 (b) Rs. 2800

(c) Rs. 2200

(c) 74%

(d) 92%

(e)  $64\frac{1}{3}\%$ 

(d) Rs. 1800 (e) Rs. 2600



# Solutions

S9. Ans.(d)

# S1. Ans.(e)

Sol.  $\sqrt{5776} - \sqrt{1444} + \sqrt{729} = 43 + ?$  76 - 38 + 27 = 43 + ??=65 - 43 = 22

## S2. Ans.(a)

Sol. 78 ×26÷6 +1262= 1311 + (?)<sup>2</sup> 2028÷6+1262 =1311 +(?)<sup>2</sup> 338+1262 =1311+(?)<sup>2</sup> (?)<sup>2</sup>=1600 -1311 =289 ? = $\sqrt{289}$  =17

#### S3. Ans.(a)

**Sol.** 1484÷28 + 1462÷34 -12×7=? ?=53+43 -84 = 12

#### S4. Ans.(c)

**Sol.** 42.5×15 +37.5×25=1420 + ? 637.5+937.5 =1420 + ? ?= 1575 - 1420 = 155

#### **S5. Ans.(b) Sol.** 2450 +3760 -3830 =6000 - ? 2380 =6000 - ? ?=6000 -2380 = 3620

S6. Ans.(e) Sol.  $\binom{\frac{4}{5}of25}{64} \div \left(432 - 20^2 + \frac{3}{7}of\ 21\right) \times (82) =? of\ \frac{1}{64}$  $\binom{5}{16} \div (432 - 400 + 9) \times (82) =? \times \frac{1}{64}$  $? = \frac{5}{16} \times \frac{1}{41} \times 82 \times 64 = 40$ 

## S7. Ans.(a)

**Sol.** 55% of 900 + 70% of 1050 = ?% of 3000  $\frac{55}{100} \times 900 + \frac{70}{100} \times 1050 = \frac{?}{100} \times 3000$   $495 + 735 = 30 \times ?$   $30 \times ? = 1230$ ? = 41

**S8. Ans.(b) Sol.** 73823 - 34156 + 4756 + 6758 - 9849 = 41499 - 160-? 41332 = 41339-? ?= 7

```
14 = ? - 36
?= 50
Sol. 84 × \frac{1}{4} \div 21^2 + ? = \frac{7}{147} \times 21 - \frac{20}{21}
84 × \frac{1}{4} × \frac{1}{441} + ? = 1 - \frac{20}{21}
\frac{1}{21} + ? = \frac{1}{21}
?= 0
Sol. \sqrt{\frac{3840}{60} + \frac{1440}{40} - \frac{1330}{70}}
= \sqrt{64 + 36 - 19}
= \sqrt{81}
=9
S12. Ans.(c)
Sol. 25 \times 18 + \frac{4200}{40} - \frac{525}{105} = 740 - ?
```

**Sol.**  $\frac{5599}{1331} \times \frac{3773}{2036} \times \frac{88}{49} = ? - 6^2$ 

450+105-5=740 -? ?= 740-550 =190

S13. Ans.(d) Sol.  $3845+4380+2640 - 5965 = (?)^2$  $(?)^2=10865 - 5965$ =4900 $?=\sqrt{4900}$ =70

## **S14. Ans.(b) Sol.** 400 ÷ 20 × 35 + 6666 ÷ 33+ ? = 1100 20× 35 + 202+? = 1100 ?=1100-(700+202) =1100- 902 =198

**S15. Ans.(b) Sol.** 28×14.5+1680÷15+445=1000 -? 406+112+445=1000-? 963=1000-? ?=1000-963=37





200 Quantitative Aptitude Questions for LIC AAO

## S16. Ans.(c)

Sol.  $\frac{130}{100} \times 1200 + \frac{1250}{50} \times 30 = ?$   $130 \times 12 + 25 \times 30 = ?$ ? = 1560 + 750 ? = 2310

# S17. Ans.(a)

Sol.  $\frac{156}{13} + (3)^2 \times 40 = \frac{?}{100} \times 600$   $12 + 9 \times 40 = ? \times 6$   $? = \frac{372}{6} = 62$ 

S18. Ans.(a) Sol.  $\sqrt{81 \times 36} + \frac{680}{17} = ? + (512)^{\frac{1}{3}}$  $\sqrt{2916} + 40 = ? + 8$ ? = 54+ 40 - 8 = 86

# S19. Ans.(e)

Sol.  $\frac{1600}{100} \times 140 + \frac{?}{100} \times 1600 = 72 \times 40$   $16 \times 140 + 16 \times ? = 72 \times 40$   $2240 + 16 \times ? = 2880$   $? = \frac{640}{16} = 40$ 

## S20. Ans.(d)

**Sol.** (17)<sup>2</sup> + (22)<sup>2</sup> + (8)<sup>2</sup> + ? = 1750 - 820 + 2210 ? + 289 + 484 + 64 = 1750 - 820 + 2210 ? = 2303

S21. Ans.(a) Sol.  $308 + 672 - \frac{40}{100} \times ? + \frac{80 \times 355}{100} = (28)^2$  $980 + 284 - 784 = \frac{2 \times ?}{5}$  $? = \frac{480 \times 5}{2}$ ? = 1200

S22. Ans.(b) Sol.  $\frac{\frac{178+?}{8}}{100} + 25 \times 42 - \frac{16}{100} \times 400 = (32)^{2}$  $\frac{\frac{178+?}{8}}{100} = 1024 + 64 - 1050$  $\frac{178+?}{100} = 126$ 

S23. Ans.(e) Sol.  $\sqrt{1296} + \sqrt{2025} + \sqrt{1521} - \sqrt{?} = \frac{13}{100} \times 900$  $36 + 45 + 39 - \sqrt{?} = 117$  $\sqrt{?} = 120 - 117$ ? = 9 S24. Ans.(b) Sol.  $350 + \frac{56 \times 240}{14} + \sqrt{?} = (11)^3$  $\sqrt{?} = 1331 - 350 - 960$  $\sqrt{?} = 21$ ? = 441 S25. Ans.(c) Sol.  $32 \times 35 + \sqrt{961} + \frac{19 \times ?}{100} = \frac{40}{100} \times 3305$  $1120 + 31 + \frac{19 \times ?}{100} = 1322$  $\frac{19\times?}{100} = 1322 - 1151$  $? = \frac{171\times100}{19}$ ? = 900S26. Ans.(b) Sol.  $1782 \div 54 + 456 - 2346 \times 1 = ? \times 3$  $\Rightarrow$  33 + 456 - 2346 = ? × 3  $\Rightarrow -1857 = ? \times 3$  $\Rightarrow ? = \frac{-1857}{2}$ = -619 S27. Ans.(c) Sol.  $(575 + 7511 - 2769) \div (76 \times 1 + 675 - 342) = \sqrt{?}$  $= 5317 \div 409 = \sqrt{?}$  $\Rightarrow$  ? = (13)<sup>2</sup> = 169 S28. Ans.(a) Sol.  $\left[\left(\sqrt{3844 \times 9}\right) \div (27)^{\frac{1}{3}}\right] \times 23 = ?^{2} + 337$  $\Rightarrow [(62 \times 3) \div 3] \times 23 = ?^2 + 337$  $\Rightarrow$  1426 - 337 = ?<sup>2</sup>  $\Rightarrow$  ? =  $\sqrt{1089}$ = 33 S29. Ans.(d) Sol.  $= \sqrt{(96) \times 12 \div 18 + 26 - 9} = (65 - ?)\% \text{ of } 36$  $\Rightarrow 9 = \frac{(65 - ?)}{100} \times 36 \Rightarrow (65 - ?) = \frac{9 \times 100}{36}$  $\Rightarrow ? = 65 - 25 = 40$ 

Adda 24



20

www.bankersadda.com | www.sscadda.com | www.careerpower.in | Adda247 App





6052

(6)<sup>2</sup>

#### S43. Ans.(d) S49. Ans.(a) Sol. Sol. $32\% of 600.02 - 19.99\% of 400.04 + ? = 859.99 \div 2$ Wrong no. = 120 $\frac{32}{100} \times 600 - \frac{20}{100} \times 400 + ? = \frac{860}{2}$ 118 + 7 = 125125 + 11 = 136192 - 80 + ? = 430136 + 13 = 149? = 318149 + 17 = 166166 + 19 = 185S44. Ans.(b) 185 + 23 = 208Sol. $\frac{141}{20.09} + \frac{279.89}{39.99} - \sqrt{?} = 10.01$ $\frac{140}{20} + \frac{280}{40} - \sqrt{?} = 10$ \$50. Ans.(b) Sol. $\sqrt{?} = 7 + 7 - 10$ Wrong no. = 214 ? = 16 $205 + 2^3 = 213$ $213 - 3^3 = 186$ S45. Ans.(c) $186 + 4^3 = 250$ Sol. $250 - 5^3 = 125$ $8.98 \times 60.02 - 19.99^2 + 10.01\%$ of 130.09 = ? $125 + 6^3 = 341$ $9 \times 60 - 20^2 + \frac{10}{100} \times 130 = ?$ $341 - 7^3 = -2$ 540 - 400 + 13 = ?? = 153**S51**. Ans.(b) S46. Ans.(d) Sol. Wrong number = 810 Sol. Pattern of series -Wrong no. = 22 814 $28 \times 0.5 = 14$ + 6 $14 \times 1 = 14$ $14 \times 1.5 = 21$ $21 \times 2 = 42$ So, there should be 814 in place of 810. $42 \times 2.5 = 105$ $105 \times 3 = 315$ S52. Ans.(d) S47. Ans.(e) **Sol.** Wrong number = 350 Sol. Pattern of series -Wrong no. = 47 1024 348 $5 + (1^2 + 1) = 7$ +196 + 4 8 4 -324 -676 $7 + (2^2 + 2) = 13$ $13 + (3^2 + 3) = 25$ $25 + (4^2 + 4) = 45$ $(26)^{2}$ (22)<sup>2</sup> (18)<sup>2</sup> $(14)^2$ $(10)^{2}$ $45 + (5^2 + 5) = 75$ So, there should be 348 in place of 350. $75 + (6^2 + 6) = 117$ \$53. Ans.(a) S48. Ans.(d) Sol. Wrong number = 646 Sol. Pattern of series -Wrong no. = 2400 190 210 $288000 \div 12 = 24000$ $24000 \div 10 = 2400$ +20 $2400 \div 8 = 300$ $300 \div 6 = 50$ $50 \div 4 = 12.5$ So, there should be 650 in place of 646. $12.5 \div 2 = 6.25$

21







# **Sol.** Wrong number = 1 Pattern of series –



So, there should be 2 in place of 1.

# S60. Ans.(b)

**Sol.** Wrong number = 1990

Pattern of series -

| 21  | 00         | 213 | 36 19    | 92 23    | 16 17    | 40 2  | 640             | 1344            |
|-----|------------|-----|----------|----------|----------|-------|-----------------|-----------------|
|     |            |     |          |          |          |       |                 |                 |
|     | +3         | 6   | -144     | +324     | -576     | +900  | -12             | 296             |
|     | 1          |     | 1        | 1        | 1        | 1     | 1               |                 |
|     | (6)        | 2   | $(12)^2$ | $(18)^2$ | $(24)^2$ | (30)  | <sup>2</sup> (3 | 6) <sup>2</sup> |
| с - | 4 <b>1</b> |     | 1 . 1    | 1002:    |          | 61000 |                 |                 |

So, there should be 1992 in place of 1990.

## S61. Ans.(a)

 $2x^2 + x - 6 = 0$  $2x^2 + 4x - 3x - 6 = 0$ 2x(x+2) - 3(x+2) = 0(2x-3)(x+2) = 0x = 1.5, -2 $v^2 + 6v + 9 = 0$  $y^{2} + 3y + 3y + 9 = 0$ y(y + 3) + 3(y + 3) = 0 (y+3)(y+3) = 0y = -3, -3So, x > y

# S62. Ans.(d)

```
x^2 - 4x + 4 = 0
x^2 - 2x - 2x + 4 = 0
x(x-2) - 2(x-2) = 0
(x-2)(x-2) = 0
x = 2.2
y^2 - 10y + 16 = 0
y^2 - 8y - 2y + 16 = 0
So, x < v
```

So, there should be 256 in place of 255.





| BANKERS 200 Quantitat               | 200 Quantitative Aptitude Questions for LIC AAO     |  |  |
|-------------------------------------|-----------------------------------------------------|--|--|
| S663. Ans.(e)                       | S66. Ans.(a)                                        |  |  |
| Sol.                                | Sol.                                                |  |  |
| I:                                  | I:                                                  |  |  |
| $2x^2 + 7x + 6 = 0$                 | $4x^2 - 20x + 25 = 0$                               |  |  |
| $2x^2 + 3x + 4x + 6 = 0$            | $4x^2 - 10x - 10x + 25 = 0$                         |  |  |
| x(2x+3) + 2(2x+3) = 0               | 2x(2x-5) - 5(2x-5) = 0                              |  |  |
| (2x+3)(x+2) = 0                     | (2x-5)(2x-5) = 0                                    |  |  |
| $x = -\frac{3}{2}, -2$              | $x = \frac{5}{2}, \frac{5}{2}$                      |  |  |
| II:                                 | II:                                                 |  |  |
| $3y^2 + 11y + 10 = 0$               | $5y^2 - 6y - 8 = 0$                                 |  |  |
| $3y^2 + 6y + 5y + 10 = 0$           | $5y^2 - 10y + 4y - 8 = 0$                           |  |  |
| 3y(y+2) + 5(y+2) = 0                | 5y(y-2) + 4(y-2) = 0                                |  |  |
| (3y+5)(y+2) = 0                     | (5y+4)(y-2) = 0                                     |  |  |
| $y = -\frac{5}{3}, -2$              | $y = 2, -\frac{4}{5}$                               |  |  |
| So, no relation can be established. | So, $x > y$                                         |  |  |
| \$64 Ans (d)                        | \$67. Ans.(b)                                       |  |  |
| Sol                                 | Sol                                                 |  |  |
| 501.<br>L                           | J.                                                  |  |  |
| l:                                  | $r^2 - 2r - 15 = 0$                                 |  |  |
| $x^2 - 2x - 24 = 0$                 | $x^{2} - 2x - 15 = 0$<br>$x^{2} - 5x + 2x - 15 = 0$ |  |  |
| $x^2 - 6x + 4x - 24 = 0$            | $x^{2} = 3x + 3x - 13 = 0$                          |  |  |
| x(x-6) + 4(x-6) = 0                 | x(x-3) + 3(x-3) = 0                                 |  |  |
| (x-6)(x+4) = 0                      | (x+3)(x-5) = 0                                      |  |  |
| x = -4, 6                           | x = -3, 5                                           |  |  |
| II:                                 |                                                     |  |  |
| $y^2 - 12y + 36 = 0$                | $y^2 - 15y + 56 = 0$                                |  |  |
| $y^2 - 6y - 6y + 36 = 0$            | $y^2 - 8y - 7y + 56 = 0$                            |  |  |
| y(y-6) - 6(y-6) = 0                 | y(y-8) - 7(y-8) = 0                                 |  |  |
| (y-6)(y-6) = 0                      | (y-7)(y-8) = 0                                      |  |  |
| <i>y</i> = 6, 6                     | y = 7, 8                                            |  |  |
| So, $x \leq y$                      | So, $x < y$                                         |  |  |
| \$65 Ans (a)                        | S68. Ans.(e)                                        |  |  |
| Sol                                 | Sol.                                                |  |  |
| 501.<br>I.                          | I:                                                  |  |  |
| 1: $4x^2 + 11x + 6 = 0$             | $10x^2 + 19x + 7 = 0$                               |  |  |
| $4x^2 + 11x + 6 = 0$                | $10r^2 + 14r + 5r + 7 = 0$                          |  |  |
| $4x^2 + 8x + 3x + 6 = 0$            | 2r(5r + 7) + 1(5r + 7) = 0                          |  |  |
| 4x(x+2) + 3(x+2) = 0                | (2x + 1)(5x + 7) = 0                                |  |  |
| (4x+3)(x+2) = 0                     | (2x + 1)(3x + 7) = 0                                |  |  |
| $x = -\frac{3}{4}, -2$              | $x = -\frac{1}{2}, -\frac{1}{5}$                    |  |  |
| II:                                 |                                                     |  |  |
| $y^2 + 10y + 25 = 0$                | $5y^2 + 16y + 12 = 0$                               |  |  |
| $y^2 + 5y + 5y + 25 = 0$            | $5y^2 + 6y + 10y + 12 = 0$                          |  |  |
| y(y+5) + 5(y+5) = 0                 | y(5y+6) + 2(5y+6) = 0                               |  |  |
| (y+5)(y+5) = 0                      | (y+2)(5y+6) = 0                                     |  |  |
| y = -5, -5                          | $y = -2, -\frac{6}{5}$                              |  |  |

So, no relation can be established.

So, *x* > *y* 





| BAIMERS                             | 200 Quantitative Aptitud | le Questions for LIC AAU                     |
|-------------------------------------|--------------------------|----------------------------------------------|
| S69. Ans.(a)                        |                          | S72. Ans.(c)                                 |
| Sol.                                |                          | Sol.                                         |
| I.                                  |                          | I:                                           |
| 1:                                  |                          | $x^2 - 18x + 56 = 0$                         |
| $x^2 - 20x + 75 = 0$                |                          | $x^2 - 14x - 4x + 56 = 0$                    |
| $x^2 - 15x - 5x + 75 = 0$           |                          | x(x-14) - 4(x-14) = 0                        |
| r(r-15) - 5(r-15) = 0               |                          | (x-4)(x-14) = 0                              |
| x(x = 15) = 5(x = 15) = 0           |                          | x = 4.14                                     |
| (x-5)(x-15) = 0                     |                          | II:                                          |
| x = 5, 15                           |                          | $v^2 + 4v - 32 = 0$                          |
| II:                                 |                          | $v^2 + 8v - 4v - 32 = 0$                     |
| $v^2 + 19v + 84 = 0$                |                          | y(y+8) - 4(y-8) = 0                          |
| $y^{2} + 12y + 7y + 84 = 0$         |                          | (y-4)(y+8) = 0                               |
| y(y + 12) + 7(y + 12) = 0           |                          | y = -8, 4                                    |
| y(y + 12) + 7(y + 12) = 0           |                          | So, $x \ge y$                                |
| (y+12)(y+7) = 0                     |                          |                                              |
| y = -12, -7                         |                          | \$73. Ans.(d)                                |
| So, $x > y$                         |                          | Sol.                                         |
|                                     |                          | I:                                           |
| <b>570</b> Apr (a)                  |                          | $x^2 + 14x - 72 = 0$                         |
| 370. Alls.(e)                       |                          | $x^2 + 18x - 4x - 72 = 0$                    |
| Sol.                                |                          | x(x+18) - 4(x+18) = 0                        |
| I:                                  |                          | (x+18)(x-4) = 0                              |
| $x^2 - 9x - 22 = 0$                 |                          | x = -18, 4                                   |
| $x^{2}$ 11x 12x 22 - 0              |                          | II:                                          |
| x = 11x + 2x - 22 = 0               |                          | $y^2 - 13y + 36 = 0$                         |
| x(x - 11) + 2(2x - 11) = 0          |                          | $y^2 - 9y - 4y + 36 = 0$                     |
| (x+2)(x-11) = 0                     |                          | y(y-9) - 4(y-9) = 0                          |
| x = -2, 11                          |                          | (y-4)(y-9) = 0                               |
| II:                                 |                          | y = 4, 9                                     |
| $v^2 - 17v + 66 = 0$                |                          | So, $x \leq y$                               |
| $y^{2}$ 11y 6y 166 - 0              |                          |                                              |
| y = 11y = 0y + 00 = 0               |                          | S74. Ans.(d)                                 |
| y(y-11) - 6(y-11) = 0               |                          | 501.<br>L                                    |
| (y-11)(y-6) = 0                     |                          | 1:<br>$r^2 - 0^2 - 12^2$                     |
| y = 6, 11                           |                          | $x^{2} - 144 \pm 81$                         |
| So, no relation can be established. |                          | $x^2 - 225$                                  |
|                                     |                          | x = 223<br>r = 15 = 15                       |
| \$71 Apc (b)                        |                          | $\chi = 10, 10$                              |
| 571. Alls.(b)                       |                          | $v^3 = 3375$                                 |
| 501.                                |                          | y = 15                                       |
| I:                                  |                          | So, $x \le y$                                |
| $4x^2 + 19x + 15 = 0$               |                          |                                              |
| $4x^2 + 15x + 4x + 15 = 0$          |                          | S75. Ans.(b)                                 |
| x(4x + 15) + 1(4x + 15) = 0         |                          | Sol.                                         |
| (4r + 15)(r + 1) = 0                |                          | I:                                           |
| (4x + 15)(x + 1) = 0                |                          | $\frac{5}{x^2} \frac{3}{x^2}$                |
| x = -1, -15                         |                          | $\frac{1}{28} = \frac{1}{7}$                 |
| 11:                                 |                          | $x^{\frac{5}{2}-\frac{3}{2}} = \frac{28}{2}$ |
| $8y^2 + 10y + 3 = 0$                |                          | r = 7                                        |
| $8y^2 + 6y + 4y + 3 = 0$            |                          | $\lambda - \tau$                             |
| 2y(4y+3) + 1(4y+3) = 0              |                          | $11v + (7 \times 6) = 97$                    |
| (4y+3)(2y+1) = 0                    |                          | 11v + 42 = 97                                |
|                                     |                          | 11y = 55                                     |
| $y = -\frac{1}{4}, -\frac{1}{2}$    |                          | y = 5                                        |
| So, $x < y$                         |                          | So, $x < y$                                  |



www.bankersadda.com | www.sscadda.com | www.careerpower.in | Adda247 App

| Adda 247 |  |
|----------|--|
| BANKERS  |  |



| BANKERS 200 Quantitative Aptitud                     | le Questions for LIC AAO                                                |
|------------------------------------------------------|-------------------------------------------------------------------------|
| \$83. Ans.(d)                                        | \$87. Ans.(b)                                                           |
| Sol.                                                 | Sol.                                                                    |
| $I_{x}x^{2} + 12x + 32 = 0$                          | $1 r^2 - 14r + 45 = 0$                                                  |
| $x^{2}+8x+4x+32=0$                                   | $r^2 = 9r = 5r \pm 45 = 0$                                              |
| x(x+8)+4(x+8)=0                                      | x = 9x = 5x + 45 = 0                                                    |
| (x+8)(x+4)=0                                         | x(x-9) - 5(x-9) = 0                                                     |
| v = -8 = 4                                           | (x-9)(x-5) = 0                                                          |
| $x = 0, \pm 12 = 0$                                  | x = 9, 5                                                                |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$ | II. $y^2 + 2y - 35 = 0$                                                 |
| $y^2 + 3y + 4y + 12 = 0$                             | $y^2 + 7y - 5y - 35 = 0$                                                |
| y(y+3)+4(y+3)=0                                      | y(y+7) - 5(y+7) = 0                                                     |
| (y+4)(y+3)=0                                         | (y-5)(y+7) = 0                                                          |
| y = -4, -3                                           | y = 5 - 7                                                               |
| So, $y \ge x$                                        | $y = 3$ , $\gamma$                                                      |
|                                                      | $50, x \ge y$                                                           |
| S84. Ans.(a)                                         |                                                                         |
| Sol.                                                 | \$88. Ans.(e)                                                           |
| I. $3x^2 + 16x + 20 = 0$                             | Sol.                                                                    |
| $3x^2 + 6x + 10x + 20 = 0$                           | $I. x^2 + 11x + 18 = 0$                                                 |
| 3x(x+2) + 10(x+2) = 0                                | $x^2 + 9x + 2x + 18 = 0$                                                |
| (3x+10)(x+2)=0                                       | x(x+9) + 2(x+9) = 0                                                     |
| $v = 2^{10}$                                         | (x + 9)(x + 2) = 0                                                      |
| $x - 2, -\frac{3}{3}$                                | (x + y)(x + 2) = 0<br>x = -2 0                                          |
| II. $y^2 + 14y + 48 = 0$                             | x = -2, -9                                                              |
| $y^2 + 8y + 6y + 48 = 0$                             | $11. y^2 + 6y + 8 = 0$                                                  |
| y(y +8)+6(y+8)=0                                     | $y^2 + 4y + 2y + 8 = 0$                                                 |
| (y+6)(y+8)=0                                         | y(y+4) + 2(y+4) = 0                                                     |
| y =-6, -8                                            | (y+4)(y+2) = 0                                                          |
| So, x > y                                            | y = -4, -2                                                              |
|                                                      | So, no relation can be established                                      |
| \$85. Ans.(e)                                        | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                 |
| Sol.                                                 | \$89 Ans (c)                                                            |
| I. $x^2 + x - 72 = 0$                                | Sol                                                                     |
| x <sup>2</sup> + 9x-8x-72=0                          | $\int dx^2 + F x + 6 = 0$                                               |
| x(x+9)-8(x+9)=0                                      | 1. x + 5x + 0 = 0                                                       |
| (x+9)(x-8)=0                                         | $x^2 + 3x + 2x + 6 = 0$                                                 |
| x = 8 - 9                                            | x(x+3) + 2(x+3) = 0                                                     |
| $11 v^2 + 13v + 42 = 0$                              | (x+3)(x+2) = 0                                                          |
| $v^2 + 6v + 7v + 42 = 0$                             | x = -3, -2                                                              |
| y(y+6)+7(y+6)=0                                      | II. $y^2 - 15y = 16$                                                    |
| y(y+0)(y+7)=0                                        | $y^2 - 15y - 16 = 0$                                                    |
| y = -6 -7                                            | $v^2 - 16v + v - 16 = 0$                                                |
| y = -0,-7                                            | y(y - 16) + 1(y - 16) = 0                                               |
| so, no relation can be established between x and y.  | y(y = 10) + 1(y = 10) = 0<br>(y + 1)(y = 16) = 0                        |
| 60( Area (a)                                         | (y+1)(y-10) = 0                                                         |
| 586. ANS.(C)                                         | y = -1, 10                                                              |
|                                                      | Clearly, $x < y$                                                        |
| $1. x^2 + 5x + 6 = 0$                                |                                                                         |
| $x^2 + 3x + 2x + 6 = 0$                              | S90. Ans.(a)                                                            |
| x(x+3) + 2(x+3) = 0                                  | Sol.                                                                    |
| (x+3)(x+2) = 0                                       | Multiplying II by 3 and subtracting II from I, we get,                  |
| x = -2, -3                                           | v = -1 and $x = 3$                                                      |
| II. $y^2 - 9y + 14 = 0$                              | $S_0 x > y$                                                             |
| $y^2 - 7y - 2y + 14 = 0$                             |                                                                         |
| y(y-7) - 2(y-7) = 0                                  | 601 And (h)                                                             |
| (y-2)(y-7) = 0                                       | <b>ЗУТ. AIIS.(D)</b> (22, 22), 10                                       |
| v = 2.7                                              | <b>Sol.</b> Required percentage = $\frac{(22+23)-10}{22+23} \times 100$ |
| So. v>x                                              | ~ 722+23                                                                |
|                                                      | ~ /0/0                                                                  |





S92. Ans.(c) Sol. Required average  $=\frac{1}{3} \times (12 + 15 + 18)\% \times 22500$  $=\frac{15}{100} \times 22500$ = 3375

**Sol.** Required no. of passenger =  $22500 \times \frac{23-12}{100} = 2475$ 

# S94. Ans.(d)

**Sol.** Required ratio =  $22500 \times \frac{10}{100} \times \frac{7}{15}$ :  $22500 \times \frac{23}{100} \times \frac{5}{23}$ = 14: 15

#### S95. Ans.(a)

**Sol.** Passenger travelling to Rewari =  $22500 \times \frac{18}{100} = 4050$ Passenger travelling to Panipat =  $22500 \times \frac{15}{100} = 3375$ Required difference =  $3375 \times 75 \times \frac{4}{3} - 4050 \times 75$ =  $75 \times (4500 - 4050)$ =  $75 \times 450$ = 33750 Rs.

#### Sol (96-100): -

For city C Total population of city C =  $\frac{6000}{6.25} \times 100 = 96000$ Literate population of city C = 96000  $\times \frac{2}{2} = 64000$ Illiterate population = 96000  $\times \frac{1}{3}$  = 32000 Graduate population =  $64000 \times \frac{40}{100} = 25600$ For city **B** Total population = 16000 Literate population = 6000Illiterate population = 16000 - 6000 = 10000Graduate population =  $6000 \times \frac{40}{100} = 2400$ For city A Total population = 22000 Literate population =  $22000 \times \frac{5}{11} = 10000$ Illiterate population = 22000 - 10000 = 12000Graduate population =  $10000 \times \frac{40}{100} = 4000$ S96. Ans.(c) **Sol.** Required percentage =  $\frac{6000}{12000} \times 100 = 50\%$ 

**S97. Ans.(d) Sol.** Required ratio = 25600: 16000 = 8:5

**S98. Ans.(a) Sol.** Required difference = 32000 - 2400 = 29600 **S99.** Ans.(b) **Sol.** Population which is literate but ungraduated from city A =  $10000 \times \frac{60}{100} = 6000$ Required percentage =  $\frac{6000}{2400} \times 100 = 250\%$ 

## S100. Ans.(c)

**Sol.** Graduate male from city  $C = \frac{25600}{16} \times 9 = 14400$ Literate but ungraduated from city  $B = 6000 \times \frac{60}{100} = 3600$ Required difference = 14400 - 3600 = 10800

#### S101. Ans.(b)

**Sol.** Cost price of per kg rice  $=\frac{2200}{55} \times \frac{100}{160} = Rs.25$ Selling price of per kg sugar  $=\frac{1200}{40} = Rs.30$ Required difference = 30 - 25 = Rs.5 less

**S102.** Ans.(e) **Sol.** selling price of one kg wheat  $=\frac{900}{45} = Rs. 20$ Selling price of one kg salt  $=\frac{600}{60} = Rs. 10$ Required average selling price  $=\frac{20\times3+10\times2}{3+2} = \frac{80}{5}$ = Rs. 16 per kg

**Sol.** Required percentage =  $\frac{900}{2200-600} \times 100 = 56.25\%$ 

**S104.** Ans.(b) **Sol.** selling price of a kg pulse =  $\frac{3750}{50} = Rs.75$ Profit earned on selling of one kg pulse = 75 - 60 = Rs.15Total profit =  $15 \times 40 = Rs.600$ 

**S105.** Ans.(e) **Sol.** Required average quantity  $=\frac{1}{3} \times (55 + 50 + 45)$   $=\frac{150}{3}$ = 50 kg

**S106.** Ans.(a) Sol. No. of male student playing Hockey of college L =  $450 \times \frac{8}{9} = 400$ Average no. of student playing Hockey of college M & O =  $\frac{400+500}{2}$ = 450Required percentage =  $\frac{400}{450} \times 100 = 88\frac{8}{9}\%$ 





# S107. Ans.(c)

**Sol.** Student who left playing Cricket of college N =  $350 \times \frac{1}{7} = 50$ Total student playing Football of college N = 450 + 50 = 500Required ratio =  $\frac{500+300}{500+300} = 1 : 1$ 

# S108. Ans.(b)

Sol. Average no. of student playing Hockey of college K, L and 0 $= \frac{(250+450+500)}{3} = 400$ 

Average no. of student playing Football of college K, L and M =  $\frac{400+350+300}{2}$  = 350

Required difference = 400 - 350 = 50

# S109. Ans.(e)

#### Sol.

Total no. of student playing Cricket of college L and M together = 400 + 300 = 700 Total no. of student playing Hockey of college K and M together

= 250 + 400 = 650 Required percentage =  $\frac{700-650}{650} \times 100 = 7\frac{9}{13}$ %

# S110. Ans.(d)

# Sol.

Total student in college K in 2014 = 400 + 500 + 250 = 1150 Total student in college K in 2015 = 1150  $\times \frac{120}{100}$  = 1380 Student playing Football of college K in 2015 = 1380  $\times \frac{5}{10}$ = 690 Required average =  $\frac{400+690}{2}$ =  $\frac{1090}{2}$ = 545

# Sol (111-115)

ATQ, Mortality rate for China =  $\frac{4000}{80000} \times 100 = 5\%$ Mortality rate for USA =  $\frac{11000}{350000} \times 100 = 3.14\%$ Mortality rate for Italy =  $\frac{17500}{130000} \times 100 = 13.46\%$ Mortality rate for Spain =  $\frac{15000}{140000} \times 100 = 10.71\%$  S111. Ans.(b) Sol. USA has lowest mortality rate, which is 3.14% S112. Ans.(d) Sol. Required  $\% = \frac{350000 - 17500}{17500} \times 100 = 1900\%$ S113. Ans.(c) Sol. Required ratio  $= \frac{\frac{15000}{40000} \times 100}{\frac{4000}{80000} \times 100} = 15:7$ S114. Ans.(a) Sol. Required  $\% = \frac{4000 + 11000 + 17500 + 15000}{80000} \times 100 = 59.375\%$ S115. Ans.(e) Sol. New total confirmed cases in china =  $80000 \times \frac{5}{4} = 100000$ 

Adda|24|

Mortality rate in china is 5%.

New number of total deaths =  $100000 \times \frac{5}{100} = 5000$ 

**Sol.** Price of a one kg sugar =  $84 \times \frac{11}{21} = Rs \ 44$ Price of one kg of salt =  $840 \times \frac{10}{21} = Rs \ 40$ Required difference =  $(20 \times 44 - 15 \times 40)$ = 880 - 600=  $Rs.\ 280$ 

**S117. Ans.(a) Sol.** Price of one kg of tea  $=\frac{900}{18} = Rs50$ Price of one kg of rice  $=\frac{1500}{30} = Rs50$ Required  $\% = \frac{50-50}{50} \times 100 = 0\%$ 

**Sol.** Required ratio  $=\frac{63 \times 12}{42 \times 25} = \frac{18}{25}$ 

**S119. Ans.(b)** Required%= $\frac{20+15}{30+12} \times 100 = 83\frac{1}{3}\%$ 

**S120. Ans.(b) Sol.** Required sum = (56 × 15) + (32 × 30) + (40 × 25) = 2800 Rs.







# S121. Ans.(c) Sol. Let length of train A = l metres. And let speed of train A = S m/s. ATQ, Speed of train B = $\frac{450+150}{24}$ = 25 m/sSpeed of train A, S = $\frac{l+230}{20}$ ...(i) Now, $25 - S = \frac{450 + l}{160}$ $S = 25 - \frac{450+l}{100}$ ...(ii) On solving (i) & (ii): $\frac{l+450}{160} = 25 - \frac{l+230}{29}$ l=350 metres. So, speed of train A = $\frac{350+230}{29}$ = 20 m/s.Required time = $\frac{350+50}{20}$ = 20 sec. S122. Ans.(e) Sol. Let the speed of train A and train B be 17X m/s and 13X m/s respectively. And let the length of train B = Y meter ATQ, $\frac{950+Y}{17X-13X} = 16$ Y = 64X - 950, So, length can't be determined with given data. S123. Ans.(d) Sol. Let length of train = 2L mLength of tunnel = L mATQ, $3L = 144 \times \frac{5}{18} \times 30$ L = 400 mLength of train = 800 m $\therefore$ Length of other train = 2 × 800 = 1600 m 60% of speed = $144 \times \frac{5}{18} \times \frac{60}{100} = 24$ m/sec. $\therefore$ (1600 + 800) = 24 × time $\therefore$ time = 100 sec. S124. Ans.(b) Sol. Let us assume the original speed of Deepak be 4x km/hr and original time taken by Deepak be T hr.

ATQ, decreased speed of Deepak = 3x km/hr, And increased time of Deepak =  $(T + \frac{24}{c})$ = (T + 0.40) hours So,  $4x \times T = 3x \times (T + 0.4)$ T = 1.2 hour = 72 minutes

S125. Ans.(b) Sol.

let speed of boat in still water and speed of Stream be P and Q kmph respectively.

ATQ,

 $P-Q = \frac{40}{5} = 8 \, kmph$  (Upstream Speed) P+Q = 16 kmph (Downstream Speed) ATQ, Downstream Speed, X-4 = P+QSo, X = 16+4 = 20.

# S126. Ans.(c)

Sol. Given distance between P and Q is 900 km. speed of car B =  $\frac{900}{(X+4)}$  km/h. Speed of car A =  $\frac{900}{v}$  km/h. ATQ, Car B started from P at 6:00am and car A started from P at 8:00 am They both met at 10:30 am i.e.  $\frac{900}{(X+4)} \times \frac{9}{2} = \frac{900}{X} \times \frac{5}{2}$  $\Rightarrow$  9X = 5 (X+4)  $\Rightarrow 4X = 20$ X = 5 hours So, speed of car B =  $\frac{900}{(5+4)}$  = 100 kmph. Required distance=  $100 \times \frac{9}{2} = 450$  km

S127. Ans.(b) Sol.

Now, let speed of the boat in still water and the speed of the stream be a km/hr. & b km/hr. respectively. So, upstream speed of boat = (a - b) km/hr.

ATQ,  

$$a - b = 15$$
  
Required time= $\frac{120}{(a-b)}$   
 $= \frac{120}{15}$   
=8 hr.

# S128. Ans.(c)

Sol. Let the distance between Amit's home and his office is D km.

ATQ, 
$$\frac{D}{30} + \frac{D}{X} = \frac{2D}{33}$$
  
X = 36.67 km/hr





Adda 24 7

#### S129. Ans.(a)

Sol. Time taken by X = 8 hr. Time taken by Y = 7 hr. <u>Time Speed LCM</u> X 8 hr 7 56 (Total distance) Y 7 hr 8

∴ time taken to cross each other =  $\frac{56}{15} = 3\frac{11}{15}$  hr.

= 3 hr 44 min.

 $\therefore$  Required time to cross = 11 : 44 am

#### S130. Ans.(b)

#### Sol.

Let initial speed of the car = s kmph. And initial time taken by the car to cover the distance = t hours.

So, Total Distance =  $s \times t$  km.

ATQ,

 $(s-9)(t+2) = (s+5)(t-\frac{48}{60})$ s-5t = 5 .....(i) and, st = (s-9) (t+2) 2s-9t = 18 ......(ii) From eq(i) & eq(ii) t=8 hours and s= 45 kmph so, required distance = 45 × 8 = 360 km.

# S131. Ans.(b)

Sol.

Let upstream speed of a boat be 7x km/hr. So, downstream speed of a boat =  $\frac{1100}{700} \times 7x$ = 11x km/hr. Hence, speed of boat in still water =  $\frac{7x+11x}{2}$ = 9x km/hr. And, speed of stream = 11x - 9x= 2x km/hr. ATQ, 2x = 8x = 4Required time =  $\frac{176}{11x} + \frac{70}{7x}$ =  $\frac{16}{x} + \frac{10}{x}$ =  $\frac{26}{x}$ = 6.5 hours S132. Ans.(b) Sol. Let speed of stream = r km/h A/q,  $(8-r) \times 5 = (8+r) \times 3$  $\Rightarrow 40 - 5r = 24 + 3r$  $\Rightarrow r = \frac{16}{8} = 2 \text{ km/h}$ 

S133. Ans.(b) Sol. Let total distance = d  $\therefore$  Average speed =  $\frac{d}{\frac{d}{24} + \frac{d}{48}}$ = 16 km/h

S134. Ans.(a) Sol. Let the total distance = x km  $\frac{x}{12-4} + \frac{x}{12+4} = \frac{90}{60}$  $\frac{x}{8} + \frac{x}{16} = 1.5$  $3x = 1.5 \times 16$ x = 8 km

#### S135. Ans.(d) Sol. Let one side time taken = t hour

Time taken by car = x hour ATQ,  $60x + 4(t - x) = 20 \times t$ 

 $\Rightarrow x = \frac{2}{7}t$ Let t = 7y = time taken on train x = 2y = time taken on car t-x = 5y = time taken on cycle. Required Ratio  $\rightarrow$ 60 × 2y : 4 × 5y : 20 × 7y





# S136. Ans.(c)

Sol.

In both conical shape volume will be same. Let base radius of cone is R cm So, height of the cone = 2R cm. ATQ,  $\frac{4}{3}\pi(16)^3 = 2 \times \frac{1}{3}\pi R^2 \times 2R$  $R^3 = 16^3$ R = 16 Required height = 2R = 32 cm.

S137. Ans.(d)

Sol. According to question the first place of the threeletter word will be fix & will be filled by S only.

So, rest two letter will be selected from the rest 6 letter of word STRANGE.

So, Number of possible ways =  $6 \times 5 = 30$ 

# S138. Ans.(b)

**Sol.** total outcomes =  $6^2 = 36$ Favorable outcomes = when sum is 2, 3, 4, 8, 9, 10 (1,1) (1,2) (1,3) (2,1) (2,2) (2,6) (3,1) (3,5) (3,6) (4,4)(4,5) (4,6) (5,3) (5,4) (5,5) (6,2) (6,3) (6,4) Required probability =  $\frac{18}{36} = \frac{1}{2}$ 

# S139. Ans.(a)

## Sol.

Let each of base and height of the isosceles right-angle triangle is a meter so its hypotenuse will be  $a\sqrt{2}$  m. Area of isosceles right-angle triangle =  $128 \times 16$ 

 $\frac{1}{2} \times a \times a = 2048 \text{ m}^2$ 

 $a^2 = 4096.$ a=64 m. so, its hypotenuse =  $64\sqrt{2}$  m. Now, radius of the Sphere =  $\frac{1}{2} \times 64\sqrt{2}$ 

$$= 8\sqrt{2} m.$$

Total surface area of the sphere =  $4\pi \times 8\sqrt{2} \times 8\sqrt{2}$  $=512\pi m^2$ 

# S140. Ans.(d)

Sol. Let number of employees in 'Adda 247' initially = n ATQ - $\frac{(5n+26)}{(n+1)} = (5+1)$ 5n + 26 = 6n + 6n = 20

# S141. Ans.(d) Sol.

Total number of cases when two dices are rolled simultaneouslv=36 total cases of getting same number on both the dices=(1,1), (2,2), (3,3), (4,4), (5,5), (6,6) = 6 required probability= $1 - \frac{6}{26} = \frac{5}{6}$ 

# S142. Ans.(d)

Sol. Volume of sphere =  $\frac{4}{3}\pi R^3$  (R  $\rightarrow$  Radius) Volume of cylinder =  $\pi r^2 h$  (r  $\rightarrow$  radius of cylinder, h  $\rightarrow$ height of cylinder) R = r (given) ATQ,  $\frac{4}{2}\pi R^3 = 288\pi \Rightarrow R^3 = 216 \Rightarrow R = 6 \text{ cm} = r$ Radius of cylinder=r=6cm Height of cylinder=h=12cm Volume of cylinder =  $\pi r^2 h$  $= 432\pi \text{ cm}^3$ 

S143. Ans.(c) **Sol.** Number of cubes =  $\frac{45 \times 45 \times 45}{75 \times 75 \times 75} = 216$ 

# S144. Ans.(b)

Sol. ATQ, vowels have to come together so A and I together will be treated as a single letter. And, A and I can change their respective places in 2! Ways. So, Number of ways =  $(8-1)! \times 2! = 7! \times 2!$ = 10080 ways

S145. Ans.(a) Sol. As we know there exist 2 black queens and 2 kings in a set of 52 playing cards. So, Required Probability  $=\frac{{}^{2}C_{1}}{{}^{52}C_{1}}+\frac{{}^{2}C_{1}}{{}^{52}C_{1}}=\frac{1}{13}$ 

## S146. Ans.(d)

Sol. Let the radius of cylinder and hemisphere be r cm. So, height of cylinder = 2r cm. Surface area of cylinder =  $2\pi rh$  $= 4\pi r^2$ Total Surface Area of Hemi-Sphere =  $3\pi r^2$ Required result =  $\frac{4\pi r^2 - 3\pi r^2}{3\pi r^2} \times 100$  $=33\frac{1}{2}\%$ 

S147. Ans.(e) Sol. Possible cases of balls will be 2 red or 2 Orange or 2 Green

New number of employees in 'Adda 247' = 20 + 1 = 21

Required probability  $=\frac{{}^{4}C_{2}}{{}^{9}C_{2}}+\frac{{}^{3}C_{2}}{{}^{9}C_{2}}+\frac{{}^{2}C_{2}}{{}^{9}C_{2}}=\frac{6}{36}+\frac{3}{36}+\frac{1}{36}=\frac{5}{18}$ 



| Adda 2417                                                                               | Adda 247                                                    |
|-----------------------------------------------------------------------------------------|-------------------------------------------------------------|
| BANKERS 200 Quantitative Aptitud                                                        | le Questions for LIC AAO                                    |
| S148. Ans.(a)                                                                           | S155. Ans.(d)                                               |
| Sol. In the word BLASTING, there are two vowels (A, I)                                  | Sol.                                                        |
| and six consonants (B, L, S, T, N, G).                                                  | $Required \ ratio = (100 + 80 + 110): (50 + 60 + 120 + 10)$ |
| So, required probability $=\frac{7!\times 2!}{2!}=\frac{2}{2}=\frac{1}{2!}$             | 90)                                                         |
|                                                                                         | = 290: 320                                                  |
| \$149 Ans (c)                                                                           | = 29:32                                                     |
| <b>Sol</b> radius = r cm                                                                |                                                             |
| Height $=$ 3r cm                                                                        | S156.Ans.(c)                                                |
|                                                                                         | Sol.                                                        |
| $2\pi r(r+h) = 1232$                                                                    | Wrong number = 10                                           |
| $2 \times \frac{22}{2} \times \frac{22}{2} \times \frac{1222}{2}$                       | Pattern of series –                                         |
| $\Rightarrow 2 \times \frac{1}{7} \times T \times 4T = 1232$                            | $8 \times 0.5 = 4$                                          |
| $\Rightarrow$ r = 7cm                                                                   | $4 \times 1 = 4$                                            |
| Height = $h=21cm$                                                                       | $4 \times 1.5 = 6$                                          |
| Volume of cylinder = $\frac{22}{7} \times 7 \times 7 \times 21 = 3234 \ cm^3$           | $6 \times 2 = 12$                                           |
| ,                                                                                       | $12 \times 2.5 = 30$                                        |
| \$150. Ans.(e)                                                                          | $30 \times 3 = 90$                                          |
| Sol.                                                                                    |                                                             |
| Let us suppose number of green balls in the box = $x$                                   | \$157. Ans.(c)                                              |
| ATO.                                                                                    | Sol.                                                        |
| ${}^{6}C_{1} = 1$                                                                       | Wrong number = 11                                           |
| $\overline{(6+5+x)}C_1 = \frac{1}{3}$                                                   | Pattern of series –                                         |
| $\frac{6}{2} = \frac{1}{2}$                                                             | $12 + 2^2 = 16$                                             |
| x+11 = 3<br>x+11 = 18                                                                   | $16 + 3^2 = 25$                                             |
| $\therefore x = 7$                                                                      | $25 + 4^2 = 41$                                             |
|                                                                                         | $41 + 5^2 = 66$                                             |
| \$151.Ans.(a)                                                                           | $66 + 6^2 = 102$                                            |
| Sol.                                                                                    | $102 + 7^2 = 151$                                           |
| Number of complaints received Tuesday = $100 + 80 +$                                    |                                                             |
| 70 + 110 = 360                                                                          | S158. Ans.(d)                                               |
| Number of complaints received on Wednesday= $50 +$                                      | Sol.                                                        |
| 60 + 120 + 90 = 320                                                                     | Wrong number = 25                                           |
| Required difference = $360 - 320$                                                       | Pattern of series –                                         |
| = 40                                                                                    | $21 + 2^3 = 29$                                             |
|                                                                                         | $29 - 3^2 = 20$                                             |
| S152.Ans.(b)                                                                            | $20 + 2^3 = 28$                                             |
| Sol.                                                                                    | $28 - 3^2 = 19$                                             |
| $P_{\text{advised }0} = \frac{(70+110)-(50+60)}{70} = \frac{70}{70} \times 100 = 62.62$ | $19 + 2^3 = 27$                                             |
| Required $\% = \frac{1}{(50+60)} = \frac{1}{110} \times 100 = 63.63$                    | $27 - 3^2 = 18$                                             |
| \$153 Ans (c)                                                                           | \$159.Ans.(a)                                               |
| Sal                                                                                     | Sol.                                                        |
| $R_{equired ratio} = (80 \pm 60) \cdot (50 \pm 90)$                                     | Wrong number = 104                                          |
| = 1.1                                                                                   | Pattern of series –                                         |
| - 1.1                                                                                   | 20 + 8 = 28                                                 |
| \$154 Ans (c)                                                                           | 28 + 12 = 40                                                |
| Sol                                                                                     | 40 + 16 = 56                                                |
| D ( 10( (70+120) (00)                                                                   | 56 + 20 = 76                                                |
| <i>Required</i> $\% = \frac{1}{(100+80+70+110)} \times 100$                             | 76 + 24 = 100                                               |
| $=\frac{190}{200} \times 100 = 52.77 \approx 53 \%$                                     | 100 + 28 = 128                                              |
| 360                                                                                     | l                                                           |

l

| Adda 247 |
|----------|
| BANKERS  |



S160.Ans.(e) Sol. Wrong number = 20 Pattern of series - $1 \times 1 + 1 = 2$  $2 \times 2 + 2 = 6$  $6 \times 3 + 3 = 21$  $21 \times 4 + 4 = 88$  $88 \times 5 + 5 = 445$  $445 \times 6 + 6 = 2676$ S161.Ans.(a) Sol.  $63 + 18 = ?^2$ ? = 9S162.Ans.(e) Sol.  $43 - 16 = \sqrt{?} - 12$ ? = 1521S163.Ans.(c) Sol. 75 - 63 + 25 = ?? = 37S164.Ans.(e) Sol. 3167 - 2881 - 121 = ? - 41? = 206 S165.Ans.(d) Sol.  $\frac{62.5}{100} \times ? -25 = 225$  $? = \frac{250 \times 100}{62}$ ? = 400 S166. Ans.(b) Sol.  $\frac{24}{100} \times 450 + ?^2 = 256 - 4$  $?^2 = 252 - 108$ ? = 12 S167. Ans.(d) Sol.  $? \times \left(\frac{44}{100} \times 750 + 110\right) = \frac{88}{100} \times 2500$ 

S168. Ans.(a) Sol.  $4^{?} + \frac{80}{100} \times 980 = 1040$  $4^{?}$  + 784 = 1040  $4^{?} = 256$ ? = 4 S169. Ans.(e) Sol.  $\frac{1512}{?} + \frac{50}{100} \times 488 = \frac{70}{100} \times 400$  $\frac{1512}{?}$  = 280 - 244 ? = 42 **S170.**Ans(d) Sol.  $\frac{?}{100} \times 640 + \frac{40}{100} \times 280 = 400$  $\frac{?}{100} \times 640 = 400 - 112$  $? = \frac{288 \times 100}{640}$ ? = 45S171. Ans.(d) Sol. Let total production in any of these years be 100x  $\therefore$  Required percent =  $\frac{(80x-70x)}{80x} \times 100$ = 12.5 %S172. Ans.(e) Sol. Required difference = 60% of 1,50,000 – (20+30) % of 1,50,000 = 15000S173. Ans.(b) Sol. Let total production in any of these years be 100xRequired ratio =  $\frac{\frac{30+60+30}{3}\% \text{ of } 100x}{(30+30)\% \text{ of } 100x} = 2:3$ S174. Ans.(d) Sol. Let total production in any of these years be 100x ATQ, 10% of 100x = 12000 x = 1200Required average =  $\frac{10\% \text{ of } 1,20,000 + 30\% \text{ of } 1,20,000}{2}$ 

2

? = 5

 $? \times 440 = 2200$ 

= 24000







| BANKERS 200 Quantitative Aptitu                                                                                | de Questions for LIC AAO                                                                          |
|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| S175. Ans.(b)                                                                                                  | S184. Ans.(d)                                                                                     |
| Sol.                                                                                                           | Sol.                                                                                              |
| Let total production in any of these years be 100x                                                             | Sum of selling price of all 3 type of refrigerators in year                                       |
| $\therefore \frac{20}{20} \times 100 x = 18000$                                                                | 2016 = (16000 + 22000 + 26000) = 64000                                                            |
|                                                                                                                | Sum of selling price of all 3 type of refrigerators in year                                       |
| x=900                                                                                                          | 2017 = (14000 + 25000 + 32000) = 71000                                                            |
| Total production in $2019 = \frac{200}{100} \times 100 \times 900$                                             | Sum of selling price of all 3 type of refrigerators in year                                       |
| = 1,08,000.                                                                                                    | 2018 = (15000+19000+29000) = 63000                                                                |
|                                                                                                                | Sum of sening price of all 3 type of refrigerators in year $2010 - (17000, 22000, 28000) - 67000$ |
| S176. Ans.(b)                                                                                                  | 2019 - (17000 + 22000 + 28000) - 67000                                                            |
| Sol.                                                                                                           | 50, III Teal 2010 It is lowest.                                                                   |
| -26, +52, -78, +104, -130                                                                                      | \$185. Ans.(b)                                                                                    |
| 50, 640 - 130 = 510                                                                                            | Sol.                                                                                              |
| S177  Ans(a)                                                                                                   | Required $\% = \frac{15000}{2} \times 100 = 8823\% \approx 88\%$ (approx)                         |
| Sol Pattern is                                                                                                 | $\frac{17000}{17000} \times 100 = 00.2370 \times 0070 \text{ (approx.)}$                          |
| +25 +50 +100 +200 +400                                                                                         | S196 Ang (d)                                                                                      |
| So. 402+400=802                                                                                                | Sol                                                                                               |
| 50, 102 · 100 · 002                                                                                            | $\int x^2 - 6x - 8x + 48 = 0$                                                                     |
| S178. Ans.(a)                                                                                                  | x(x-6) - 8(x-6) = 0                                                                               |
| Sol.                                                                                                           | (x - 8)(x - 6) = 0                                                                                |
| Pattern is —                                                                                                   | x = 6, 8                                                                                          |
| +(5 <sup>2</sup> -1), +(7 <sup>2</sup> +1), +(9 <sup>2</sup> -1), +(11 <sup>2</sup> +1), +(13 <sup>2</sup> -1) | II. $y^2 - 9y - 8y + 72 = 0$                                                                      |
| So,                                                                                                            | y(y-9) - 8(y-9) = 0                                                                               |
| 293+(13 <sup>2</sup> -1)=461                                                                                   | (y-9)(y-8) = 0                                                                                    |
|                                                                                                                | y = 9, 8                                                                                          |
| S179. Ans.(d)                                                                                                  | $x \leq y$                                                                                        |
| Sol.                                                                                                           |                                                                                                   |
| Pattern is —                                                                                                   | S187. Ans.(b)                                                                                     |
| $\pm 5, \pm 0, \pm 5, \pm 0, \pm 5$                                                                            | Sol.                                                                                              |
| 30, 30.4 + 3 - 10.00                                                                                           | 1. $x^2 + 7x + 6x + 42 = 0$                                                                       |
| S180. Ans.(b)                                                                                                  | x(x + 7) + 0(x + 7) = 0                                                                           |
| Sol.                                                                                                           | x = -6 - 7                                                                                        |
| ×2.5, ×1.5, ×2.5, ×1.5, ×2.5                                                                                   | $II. v^2 + 8v + 7v + 56 = 0$                                                                      |
| So, 337.5 × 2.5 = 843.75                                                                                       | v(v+8) + 7(v+8) = 0                                                                               |
|                                                                                                                | (y+8)(y+7) = 0                                                                                    |
| S181. Ans.(c)                                                                                                  | y = -8, -7                                                                                        |
| Sol.                                                                                                           | x≥y                                                                                               |
| Marked price of C in $2018 = \frac{19000}{100-24} \times 100 = 25000.$                                         |                                                                                                   |
| Cost price of C in $2018 = \frac{25000}{2} \times 3 = 15000$                                                   | S188. Ans.(c)                                                                                     |
| Required Difference = $6000 - 4000 = 2000$                                                                     |                                                                                                   |
| 1000 - 2000                                                                                                    | $1 \cdot x^{2} + 6x + 2x + 12 = 0$                                                                |
| S182. Ans.(d)                                                                                                  | x(x + b) + 2(x + b) = 0<br>(x + 2)(x + b) = 0                                                     |
| Sol.                                                                                                           | (x + 2) (x + 0) = 0<br>y = -2 = -6                                                                |
| Required average = $\frac{16000+25000+15000+22000}{1}$ = 19500 Rs                                              | x2, -0<br>II $6y^2 + 9y + 4y + 6 = 0$                                                             |
| 4                                                                                                              | 3v(2v+3) + 2(2v+3) = 0                                                                            |
| \$183 Ans (c)                                                                                                  | (2v+3)(3v+2) = 0                                                                                  |
| Sol.                                                                                                           | $y = -\frac{3}{2} - \frac{2}{2}$                                                                  |
| Required ratio $=\frac{19000}{1000} = 10.25$                                                                   | y = 2' 3                                                                                          |
| $125000 - \frac{19.25}{25000}$                                                                                 | X <y< td=""></y<>                                                                                 |

**34** 





# S189. Ans.(a)

Sol. I.  $2x^2 + 6x + 3x + 9 = 0$  2x(x + 3) + 3(x + 3) = 0 (x + 3) (2x + 3) = 0  $x = -3, -\frac{3}{2}$ II.  $y^2 + 16y + 12y + 192 = 0$  y(y + 16) + 12(y + 16) = 0 (y + 16) (y + 12) = 0 y = -16, -12x > y

# S190. Ans.(a)

Sol. I.  $x^2 - 9x + 20 = 0$   $x^2 - 5x - 4x + 20 = 0$  x (x - 5) -4 (x - 5) = 0 (x - 4) (x - 5) = 0 x = 4, 5II.  $y^2 + 3y + 3y + 9 = 0$  y(y + 3) + 3(y + 3) = 0 (y + 3)(y + 3) = 0 y = -3, -3x > y

#### S191. Ans.(b)

Sol. 90 55 75 142.5 325 862.5 ×0.5+10 ×1+20 ×1.5+30 ×2+40 ×2.5+50

#### S192. Ans.(d)

| Sol. |    | -    | 4   |      |      |
|------|----|------|-----|------|------|
| 5    | 12 | 39   | 160 | 805  | 4836 |
|      | ᡗ∟ | Î [  | Î [ | 1    | 1    |
| ×2+2 | ×3 | +3 × | 4+4 | ×5+5 | ×6+6 |

#### S193. Ans.(e)



#### S194. Ans.(a) Sol.





S195. Ans.(d) Sol. Pattern is,  $21 \quad 28 \quad 42 \quad 64 \quad 95 \quad ?$  $+7 \quad +14 \quad +22 \quad +31 \quad +41$  $+7 \quad +8 \quad +9 \quad +10$ 

**S196. Ans.(e) Sol.** Price of a one kg sugar =  $84 \times \frac{11}{21} = Rs \ 44$ Price of one kg of salt =  $840 \times \frac{10}{21} = Rs40$ Required difference =  $(20 \times 44 - 15 \times 40)$ = 880 - 600= Rs. 280

**S197. Ans.(a) Sol.** Price of one kg of tea  $=\frac{900}{18} = Rs50$ Price of one kg of rice  $=\frac{1500}{30} = Rs50$ Required  $\% = \frac{50-50}{50} \times 100 = 0\%$ 

**Sol.** Required ratio  $=\frac{63 \times 12}{42 \times 25} = \frac{18}{25}$ 

**S199. Ans.(b)** Required  $\% = \frac{20+15}{30+12} \times 100 = 83\frac{1}{3}\%$ 

**Sol.** Required sum =  $(56 \times 15) + (32 \times 30) + (40 \times 25)$ = 2800 Rs.

