

18th August. SSC CGL Mains Quant Sunday Mega Quiz

S2. Ans.(a) Sol. Volume of the toy

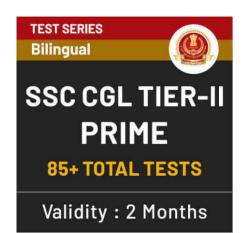
 $= \frac{8\pi}{3} + \frac{16\pi}{3} = \frac{24\pi}{3} = 8\pi \text{ cm}^3$ Volume of the cylinder = $\pi r^2 h$ = $\pi \times 2 \times 2 \times 4$ = $16\pi \text{ cm}^3$ Required difference = $16\pi - 8\pi$ = $8\pi \text{ cm}^3$ = 25.12 cm^3

S3. Ans.(c)

Sol. Slum population of A in 1991 = 35% of 91.9 lakh = $\frac{35}{100} \times 91.9$ lakh = 32.165 lakh = 32 lakh

S4. Ans.(c)

Sol. Difference = 21% of 25.5 lakh – 10% of 29.2 lakh = $\frac{21}{100} \times 25.5$ lakh – $\frac{10}{100} \times 29.2$ lakh = 5.355 – 2.920 = 2.435 lakh


S5. Ans.(b) Sol. Highest slum population is 32.165 lakh. It is present in A.

S6. Ans.(d)

Sol. Let the present age of Mr. Suman = 10x + y yrs. Age of his wife = 10y + x yrs. ATQ, $\frac{1}{11}(10x + y + 10y + x) = (10x + y) - (10y + x)$ $\Rightarrow \frac{1}{11}(11x + 11y) = 9x - 9y$ $\Rightarrow x + y = 9x - 9y$ $\Rightarrow -8x = -10y$ $\Rightarrow \frac{x}{y} = \frac{10}{8} = \frac{5}{4}$ $\therefore x : y = 5 : 4$ Age of Mr. Suman = $(10 \times 5 + 4) = 54$ years Age of wife of Mr. Suman = $(10 \times 4 + 5)$ = 45 years Required ratio = 54 : 45= 6 : 5

S7. Ans.(a)

Sol. Let the 4 numbers are A, B, C and D. According to question:- $(A + 3) = (B - 3) = (C \times 3) = (D \div 3)$ Let $(A + 3) = (B - 3) = (C \times 3) = (D \div 3) = k$ (say) Then, A = (k-3), B = (k+3); C = $(\frac{k}{3})$, D = 3k Also: - A + B + C + D = 64

2

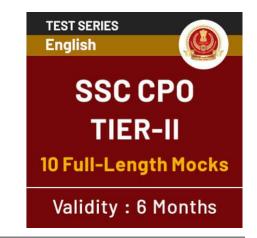
 $\Rightarrow (k-3) + (k+3) + \left(\frac{k}{3}\right) + (3k) = 64$ $\Rightarrow 5K + \frac{K}{3} = 64$ $\Rightarrow 16 k = 64 \times 3$ k = 121st number = (k - 3) = 9 = A 2nd number = (k + 3) = 15 = B 3rd number = $\left(\frac{k}{3}\right) = 4 = C$ 4th number = 3k = 36 = D

So, required answer is = 36-4=32

S8. Ans.(d)

Sol. One part of the no. is the square of 6.

 \Rightarrow 36 must be present in the number and among the options given, none of the options fulfills this criteria.


So, None of these.

S9. Ans.(c)

Sol. Let the numbers be A and B. Then $\frac{1}{5}$ of $A = \frac{5}{8}$ of B $\therefore \frac{A}{B} = \frac{5}{8} \times \frac{5}{1} = \frac{25}{8}$ Now : -Let A = 25x, B = 8xAccording to question :- $(A + 35) = (B \times 4)$ Or, $(25x + 35) = 8x \times 4$ $\therefore x = 5$ $\therefore 2^{nd}$ number = $8x = 8 \times 5 = 40$

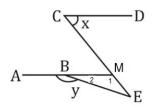
S10. Ans.(a)

Sol. Total age of the 4 members of the family, 10 yrs ago = $24 \times 4 = 96$ yrs. Present age of 4 members = 96 + 40= 136 yrs Total age of the 7 members presently = $22 \times 7 = 154$ yrs. Age of [twins + youngest child] = 154 - 136 = 18 yrs. Let the age of the one of the twins = x yrs. \therefore age of the youngest = (x - 3) yrs Then:- 2x + (x - 3) = 18Or, 3x = 21 \therefore x = 7 \therefore Age of children = 7, 7, 4 yrs.

S11. Ans.(d) Sol. Let each day's salary = Rs. x Given, $18x + 8 \times \frac{x}{2} - 60 = 1700$ $\Rightarrow x = \frac{1760}{22}$ \Rightarrow Monthly Salary $= \frac{1760}{22} \times 30 = 2400$

S12. Ans.(b)

Sol. Let $W_1 \& W_2$ are two window of a house which are at the height of 6m & 2m above the ground


6m & 2m above the ground 30 Q W W 2m C Let AC = x cm \Rightarrow W₁Q = W₂P = AC = xm $\Rightarrow QP = 4 m$ In Δ BPW₂ $\tan 60^\circ = \frac{M}{W_2 P}$ $\sqrt{3} = \frac{BQ+4}{W_2P}$ $BQ + 4 = \sqrt{3} \times W_2 P = \sqrt{3} \times x m$ \Rightarrow BQ = $\sqrt{3}$ x - 4 m In ΔBQW_1 $\tan 30^\circ = \frac{BQ}{W_1Q}$ $\frac{1}{\sqrt{3}} = \frac{\sqrt{3}x - 4}{x}$ $\Rightarrow x = 3x - 4\sqrt{3}$ $\Rightarrow -2x = -4\sqrt{3}$ $\therefore x = 2\sqrt{3}$ Height of the balloon = BQ $=\sqrt{3}x-4$ $=\sqrt{3} \times 2\sqrt{3} - 4 = 6 - 4 = 2m$ Height of the balloon above the ground = 2 + 4 + 2 = 8 m

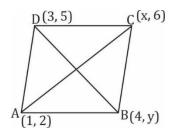
S13. Ans.(c)

Sol. : (||gm ABCD) & (||gm ABMN) are on the same base & between the same parallels. : ar(||gm ABCD) = ar(||gm ABMN) : ar(||gm ABCD) = 80 sq. unit Again, Δ APN & ||gm (ABMN) are on the same base & between the same parallels. : ar(Δ APN) = $\frac{1}{2}$ ar(||gm ABMN) = $\frac{1}{2} \times 80$ sq. unit = 40 sq unit.

S14. Ans.(d) Sol. \angle CMB = x = \angle DCM (alternate interior angles)

In ΔBME $\angle 1 = 180^{\circ} - x$ $\angle 2 = 180^{\circ} - y$ $\therefore \angle CEB = 180^{\circ} - (\angle 1 + \angle 2)$ $\angle CEB = 180^{\circ} - [180^{\circ} - x + 180^{\circ} - y]$ $= x + y - 180^{\circ}$ $= x + y - \pi$

```
S15. Ans.(b)

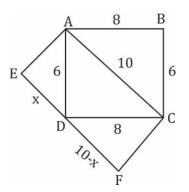

Sol. Suppose (-4, 6) divides AB in the ratio of K : 1

\frac{A(-6,10)}{K} = \frac{B(-4,6)}{1} = \frac{B(3,-8)}{1}
By section formula

-4 = \frac{K \times 3 + 1 \times -6}{K+1}
-4K - 4 = 3K - 6
-7K = -2
K = \frac{2}{7}
\therefore Required ratio = 2 : 7
```

S16. Ans.(b)

Sol. : diagonals of a ||gm bisect each other.



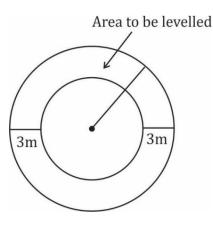
: Coordinates of mid point of AC = Coordinates of mid point of BD. $\begin{bmatrix} 1+x & 2+6 \end{bmatrix} = \begin{bmatrix} 3+4 & 5+y \end{bmatrix}$

$$\begin{bmatrix} \frac{1+x}{2}, \frac{2+6}{2} \end{bmatrix} = \begin{bmatrix} \frac{3+4}{2}, \frac{3+y}{2} \end{bmatrix}$$
$$\Rightarrow \frac{1+x}{2} = \frac{7}{2} \quad \& \frac{2+6}{2} = \frac{5+y}{2}$$
$$\Rightarrow x = 6 \qquad y = 3$$

S17. Ans.(c) Sol. Let ED = x Now, AC = $\sqrt{8^2 + 6^2} = 10$

In \triangle AED, AE² = AD² - x² = 36 - x² ____(i) And in \triangle CFD, CF² = (8)² - (10 - x)² ____(ii) From Eqs. (i) and (ii), we get 36 - x² = 64 - (10 - x)² (:: AE = FC) \Rightarrow 36 - x² = 64 - (100 + x² - 20x) \Rightarrow 20x = 72 \Rightarrow x = $\frac{18}{5}$:: From Eq. (i) AE² = 36 - $\left(\frac{18}{5}\right)^2$ AE² = 36 - $\frac{324}{25} = \frac{900-324}{25}$:: $\frac{\text{Area of rectangle ABCD}}{\text{Area of recetangle AEFC}} = \frac{8 \times 6}{10 \times \frac{24}{5}} = 1$

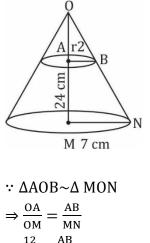
S18. Ans.(d)


Sol. Side of the square filed = $\sqrt{31684}$ = 178 m Perimeter of the square field = 4 × 178 = 712 m Length of the wire required to cover the field once = 105% of 712 m = 1.05 × 712 = 747.6 m Total length of the wire = 4 × 747.6 = 2990.4 m

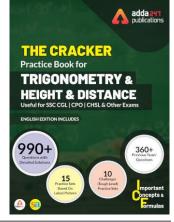
S19. Ans.(d)

Sol.

Let r be the radius of the circular ground.



 $\therefore 2\pi r = 88 \Rightarrow r = 14$ $\therefore \text{ Area of the ground to be levelled} = \pi \times 14^2 - \pi \times 11^2 = 196\pi - 121\pi = 75\pi$ Cost of leveling = $75 \times \frac{22}{7} \times 7 = \text{Rs. 1650.}$


S20. Ans.(b)

Sol. Height of the upper part of the cone = $\frac{1}{2} \times 24 = 12$ cm

0A = 12 cm

 $\Rightarrow \frac{12}{24} = \frac{AB}{7}$ $\therefore AB = \frac{7}{2} \text{ cm}$ Volume of the upper part = $\frac{1}{3}\pi r^2 h$ $= \frac{1}{3} \times \frac{22}{7} \times \frac{7}{2} \times \frac{7}{2} \times 12 = 154 \text{ cm}^2$

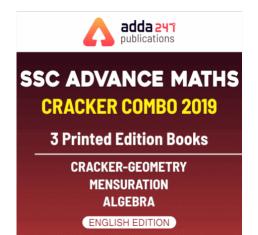
S21. Ans.(a) Sol. Ratio of CP = 1 : 2 : 4 Ratio of No. of articles Sold = 2 : 5 : 22 : 10 : 8Ratio of % profit = 10% : 20% : 25%SP = 1×1.1 : 5×1.2 : 4×1.25 Total SP = 1.1 : 6 : 5 = 12.1So, Net % profit = $\frac{12.1-10}{10} \times 100 = 21\%$

S22. Ans.(c)

Sol. Given that:-Invested ratio of A : B : C = 5 : 7 : 6 After 6 months:-Invested ratio of A : B : C = 60 : 84 : 54 Now, ratio = 40000*12 : 56000*12 : (48000*6+24000*6) Profit ratio = 10: 14 : 9

Share of profit of C = $\frac{9}{33} \times 33000$ = Rs. 9000

S23. Ans.(c)


Sol. According to question:-

Sohan = 25000 × (36 months) = Rs. 900000 Aditya = $[15000 \times 30 + 15000 \times 24]$ = Rs. 810000 \therefore Profit share of Aditya = $\frac{Sohan}{Sohan+Mohan} \times 247000$ = $\frac{9}{19} \times 247000$ = 1,17,000

S24. Ans.(a)

Sol. 25 men and 15 women complete a piece of work in 12 days. \therefore work of 8 days = $\frac{1}{12} \times 8 = \frac{2}{3}$ Remaining work = $1 - \frac{2}{3} = \frac{1}{3}$ Now:-

 $\frac{1}{3}$ piece of work completed by 25 men in 6 days.

 \therefore 1 work can be completed by 25 men in 18 days. Now:-

 $\therefore \text{ Total work done by women}$ $= \frac{1}{12} - \frac{1}{18} = \frac{3-12}{36}$ $= \frac{1}{36} = 36 \text{ days}$

S25. Ans.(b)

Sol. 12 men takes 18 days to compete 1 work. $\therefore 12 \text{ men will take 1 day to complete } \frac{1}{18} \text{ work}$ $\therefore 1 \text{ man will take 1 day to complete } \frac{1}{18 \times 12} \text{ work}$ $\therefore 10 \text{ men will complete the job in}$ $= \frac{10}{18 \times 12} + \frac{8}{12 \times 24}$ $= \frac{5}{108} + \frac{4}{144}$ $= \frac{20 + 12}{432} = \frac{32}{432}$

 \therefore 10 men will take $\frac{432}{32} = \frac{27}{2} = 13\frac{1}{2}$ days to complete a job.

S26. Ans.(c)

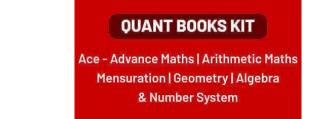
Sol. Let no. of candidates of type A = 100 According to question : - $\frac{80}{100}$ of $\frac{40}{100}$ of 100 = 32 Now:-% remaining no. of candidates = (100 - 32)% = 68%

S27. Ans.(c)

Sol. Man: Day: Time = work 117 33 8 = $\frac{4}{7}$ x 13 9 = $\frac{3}{7}$ ∴ $x = \frac{117 \times 33 \times 8 \times 3}{13 \times 9 \times 4} = \frac{92664}{468} = 198$ ∴ Required no. = 198 - 117 = 81

S28. Ans.(c)

Sol. Ratio of the amount of water filled in the


Cistern = 1^2 : $\frac{16}{9}$: 4 = 9 : 16 : 36

:: 36 cubic unit of water is filled by the pipe of largest diameter in 61 minute

water is filled by all the pipe in = $\frac{61 \times 36}{61}$

= 36 minutes

SSC CGL TIER-II

ENGLISH

S29. Ans.(c)

Sol. Time taken by pipe B (to empty) is less than the time taken by pipe A (to fill)

 \Rightarrow Rate of empty > Rate of filling

```
Now, Time required to empty the \frac{2}{5} th of the tank already filled when both the pipe A and B are opened together.
```

 $= \frac{2}{5} \times \left(\frac{10 \times 6}{10 - 6} \text{ minutes}\right)$ = 6 minutes

S30. Ans.(d)

Sol. Logical solution: -Let the initial no. of total passengers = 4x \Rightarrow Initial ratio of male to female passengers = 3 : 1 (Given) At the first stop , No. of males = 3x - m No. of females = (x - f)+6 ATQ, $\frac{3x - m}{(x - f) + 6} = \frac{2}{1}$ x = 28 - 3fSo, from options f= 4 and X = 16. So, 4x = 16*4 = 64 \Rightarrow correct option will be option (D).