Adda247

SSC CGL Tier-II Paper-I 2022-23 Memory Based (Mathematical Abilities)
 (Based on 02 Mar 2023 Exam)

Q1. Find the average of the sum of the cube of $1^{\text {st }}$ five natural numbers.
(a) 35
(b) 45
(c) 49
(d) 52

Q2. Simplify the expression.
$18 \div 2 \times 5 \times(19-13 \times 12+160)$
(a) 1035
(b) 935
(c) 405
(d) 905

Q3. A Shopkeeper sells a pen sell phone to customer of after two successive discount of 48% and 45%. If the marked price of the sell phone is 48000 , then find the selling price of sell phone after successive discount.
(a) 14,028
(b) 17,288
(c) 14,500
(d) 13,728

Q4. A certain sum inverted on compound interest grows to Rs. 21,952 and Rs. 29791. In three and six years respectively, when the interest is compounded annually. Find the percentage rate of interest.
(a) 11%
(b) 9.56%
(c) 10.71%
(d) 13.13%

Q5. A, B and C pipes can fill a tank in $8 \mathrm{hrs}, 10 \mathrm{hrs}$, and 14 hrs respectively. If A and C opened for first two house only and then A is closed while B is opened. Find in how many hours the tank gets full after A is closed?
(a) $6 \frac{17}{24}$
(b) $8 \frac{18}{15}$
(c) $4 \frac{15}{24}$
(d) $3 \frac{13}{24}$

Q6. If the income of Rahul and Radha is $7: 4$ and there expenditure is $3: 1$ each one saves Rs. 4000. Find the sum of the income of both.
(a) 18000
(b) 17600
(c) 13,050
(d) 14000

Q7. If $\tan (A+B)=\sqrt{3}$ and $\tan (A-B)=1$, then,
(a) $\mathrm{A}=52.5$ and $\mathrm{B}=7.5$
(b) $\mathrm{A}=62.5$ and $\mathrm{B}=8.5$
(c) $\mathrm{A}=0^{\circ}$ and $\mathrm{B}=40^{\circ}$
(d) $\mathrm{A}=90^{\circ}$ and $\mathrm{B}=75^{\circ}$

Q8. Find the mean of $22,18,21,20,24$.
(a) 21
(b) 22
(c) 23
(d) 20

Q9. If the speed of a boat in still water is $12 \mathrm{~km} / \mathrm{hr}$ and speed of river is $4 \mathrm{~km} / \mathrm{hr}$. A boat goes downstream and return upstream then takes 6 hours. Find the width of river.
(a) 30 km
(b) 25 km
(c) 32 km
(d) 40 km

Q10. A person purchase a machine is Rs. 6000 and sold it in Rs. 7000 after 1 year and after 2 years he purchased another machine is Rs. 9000 and sold it in Rs. 11000. overall percent of profit.
(a) 23%
(b) 20%
(c) 21%
(d) 25%

Q11. Two numbers are 20% and 35% more than a third number than find the ratio of that two number.
(a) $9: 8$
(b) $11: 10$
(c) $7: 5$
(d) $5: 4$

Q12. In a business A, B and C gets a profit in the ratio 4:3:5 respectively for a certain time which is in the ratio $2: 6: 9$. Find the ratio of there capital invested?
(a) $17: 15: 7$
(b) $18: 6: 10$
(c) $36: 9: 10$
(d) $35: 46: 10$

Q13. From top of a tower the angle of depression of a boat is 30° when boat goes 260 meter towards the tower the angle of depression become 60° find the height of the tower.
(a) $130 \sqrt{2}$
(b) $230 \sqrt{3}$
(c) $120 \sqrt{3}$
(d) $130 \sqrt{3}$

Q14. If $p^{2}-24 p+45=0$, then $(p-2)+\frac{1}{p-2}=$?
(a) 20
(b) 24
(c) 21
(d) 18

Q15. The average price of four books is 12024 and their prices are in the ratio of $3: 5: 7: 9$, then the price of costliest book is:
(a) 18036
(b) 18360
(c) 18240
(d) 18042

Q16. In the given figure, $A B C D$ touches the circumference of circle at P, Q, R, and S. If $A D=20$ $\mathrm{cm}, \mathrm{QC}=18 \mathrm{~cm}, \mathrm{AS}=10 \mathrm{~cm}$ and $\mathrm{BQ}=15$, then the perimeter of ABCD is:

(a) 102 cm
(b) 106 cm
(c) 101 cm
(d) 91 cm

Q17. In $\triangle A B C, \angle A=60^{\circ}$, Its sides $A B$ and $A C$ are produced to the point D and E . If the bisectors of $\angle C B D$ and $\angle B C E$ meet at the point 0 , then $\angle B O C$ is equal to:
(a) 90°
(b) 60°
(c) 27°
(d) 63^{0}

Q18. If $\sin \mathrm{A}+\sin \mathrm{B}=\frac{-21}{65}$ and $\cos \mathrm{A}+\cos \mathrm{B}=-\frac{27}{65}$ and $\pi<(\mathrm{A}-\mathrm{B})<3 \pi$, then $\cos (A-B)=$?
(a) $\frac{-55}{51}$
(b) $\frac{56}{60}$
(c) $-\frac{56}{65}$
(d) $\frac{-65}{62}$

Q19. A vessel which contains 300lt of mango juice. 50lt of the mango taken out from it and replaced with milk. Then, again 60lt of the mixture is taken out and replaced with milk. Find the quantity of the mango juice in this mixture:
(a) 245 lt .
(b) 362 lt .
(c) 2001t.
(d) 1501 lt .

Q20. If a sum amounts to Rs. 2920 in six years and Rs. 3212 in seven years at compound interest, when the interest is compounded yearly, then the annual rate of interest is:
(a) 15%
(b) 10%
(c) 8%
(d) 12%

Q21. If the sides of a triangle are $16 \mathrm{~cm}, 20 \mathrm{~cm}$ and 28 cm , then what is the inradius (in cm) of the triangle?
(a) $2 \sqrt{3} \mathrm{~cm}$
(b) $2 \sqrt{5} \mathrm{~cm}$
(c) $2 \sqrt{6} \mathrm{~cm}$
(d) $2 \sqrt{1} \mathrm{~cm}$

Q22. The price of an article is reduced by 20%. But the daily sale of the article is increased by 30%. The net effect on the daily sale receipts is:
(a) 4% decrease
(b) 4% increase
(c) 2% increase
(d) 2% decrease

Q23. $2 \tan 50^{\circ}+\tan 20^{\circ}$ is equal to :
(a) $\tan 60^{\circ}$
(b) $\cos 40^{\circ}$
(c) $\cot 20^{\circ}$
(d) 0

Q24. The ratio of the efficiencies of A, B and C is 3 : 5 : 7. Working together, they can complete a work in 12 days. A and B together can complete $\frac{4}{5} \frac{\text { th }}{5}$ part of that work in:
(a) 24 days
(b) 18 days
(c) 15 days
(d) 21 days

Q25. If 12% of $(A+B)=18 \%$ of $(A-B)$, then what percent of B is equal to A ?
(a) 200%
(b) 500%
(c) 400%
(d) 350%

Q26. The area of parallelogram is 675 square metres. If its altitude is thrice the corresponding base, its base is:
(a) 12 m
(b) 15 m
(c) 18 m
(d) 24 m

Q27. Two circles of radius 12 cm and 10 cm intersect each other and the length of their common chord is 16 cm . What is the distance between their centers?
(a) $6+3 \sqrt{5}$
(b) $6+4 \sqrt{5}$
(c) $4+6 \sqrt{5}$
(d) $12+8 \sqrt{3}$

Q28. In a $\triangle A B C$ line $A D$ and $C E$ are such that point D and E on line $B C$ and $A B$ respectively.
If $\mathrm{AE}: \mathrm{EB}=3: 5$ and $\mathrm{CO}: \mathrm{OE}=8: 11$, where O is the intersection point of $A D$ and $C E$. Find the ratio of $B D$: DC:
(a) 10:11
(b) $10: 19$
(c) $11: 3$
(d) $11: 2$

Q29. The marks of the students of a class who appeared for a test in English are represented in the following frequency table:

Class Interval	$1-10$	$11-20$	$21-30$	$31-40$	$41-50$	$51-60$
Frequency	9	22	-	20	12	8

100 (total frequency)
What is/are the modal class(es)?
(a) $10.5-20.5$ only
(b) $20.5-30.5$ only
(c) $10.5-20.5$ and $20.5-30.5$
(d) There is no modal class

Q30. If a card is drawn randomly from a wellshuffled pack of 52 cards, then find the probability of getting a Clubs card.
(a) $\frac{1}{4}$
(b) $\frac{1}{16}$
(c) $\frac{1}{2}$
(d) $\frac{1}{8}$

S1. Ans.(b)
Sol. Average $=\frac{1^{3}+2^{3}+3^{3}+4^{3}+5^{3}}{5}=\frac{1+8+27+64+125}{5}=45$
S2. Ans.(a)
Sol. $\Rightarrow 18 \div 2 \times 5[19-13 \times 12+160]$
$\Rightarrow 9 \times 5 \times[19-156+160]$
$\Rightarrow 45 \times$ [23]
$\Rightarrow 1035$

S3. Ans.(d)

Sol. Successive discount $=-48-45+\frac{48 \times 45}{100}$
= -71.4\%
Selling price of cell phone $=\frac{48000}{100} \times(100-71.4 \%)$
= Rs. 13,728
S4. Ans. (c)
Sol. $\sqrt[3]{21952}: \quad \sqrt[3]{29,791}$

$\Rightarrow \frac{3}{28} \times 100=10.71 \%$
S5. Ans. (d)
Sol.

$A+C=(35+20) \times 2=110$
Remaining work $=280-110=170$
Time required $=\frac{170}{(28+20)}=\frac{170}{48}=3 \frac{13}{24} \mathrm{hrs}$.

S6. Ans.(b)

Sol.
Income 14:8
Expenditure $9: 3$

$$
5: 5 \rightarrow 4000
$$

$$
1 \rightarrow 800
$$

Income $=(14+8) \times 800=17600$

S7. Ans.(a)

Sol.

$$
\begin{array}{ll}
\tan (A+B)=\sqrt{3}, & A+B=60^{\circ} \\
\tan (A-B)=1, & \begin{array}{l}
\mathrm{A}-\mathrm{B}=45^{\circ} \\
\\
\\
\\
\\
B=52.5 \\
\end{array},=7.5
\end{array}
$$

Sol.

Mean $=\frac{22+18+21+20+24}{5}=\frac{105}{5}=21$

S9 Ans.(c)

Sol. Speed of boat downstream $=12+4=16 \mathrm{~km} / \mathrm{hr}$ Speed of boat upstream $=12-4=8 \mathrm{~km} / \mathrm{hr}$
Ratio of speed \Rightarrow Downstream : Upstream

	$16: 8$
Ratio of time $\quad \Rightarrow \quad 2: 1$	
$1: 2$	

3 units $\rightarrow 6$ hours
1 units $\rightarrow 2$ hours
Distance covered (downstream) $=16 \times(1 \times 2)=$ 32km
Distance covered (upstream) $=8 \times(2 \times 2)=32 \mathrm{~km}$

S10. Ans.(b)

Sol.

SP CP Profit

Profit on $1^{\text {st }}$ machine $=7000-6000=1000$
Profit on $2^{\text {nd }}$ machine $=11000-9000=2000$
Overall Profit $=\frac{(1000+2000)}{(9000+6000)} \times 100$
$=\frac{3000}{15000} \times 100=20 \%$
S11. Ans.(a)
Sol.
IIIrd IInd
Ist

Let third number $=100 \quad 135 \% \quad 120$
Required Result $=135: 120$
9 : 8

S12. Ans.(c)
Sol.
Time $\rightarrow \quad 2: 6: 9$
Profit $\rightarrow \quad 4: 3: 5$
Investment $=\frac{\text { Profit }}{\text { Time }} 2: \frac{1}{2}: \frac{5}{9}$
Now, Divide the investment ratio with 18.
then, ratio $\Rightarrow 36: 9: 10$

S13. Ans.(d)

Sol.

If $\angle \mathrm{C}=60^{\circ}$ then, $\angle \mathrm{CAE}=60^{\circ}$
and, $\angle \mathrm{ADB}=30^{\circ}$ then $\angle \mathrm{DAE}=30^{\circ}$
So, $\angle \mathrm{CAD}=\angle \mathrm{CAE}-\angle \mathrm{DAE}=60^{\circ}-30^{\circ}=30^{\circ}$
Now, $\angle \mathrm{CAD}=\angle \mathrm{CAD}=30^{\circ}$
$\mathrm{AC}=\mathrm{CD}=260$
Ratio of sides for 60° in right angle triangle.
AB : BC: AC
$\sqrt{3}: 1: 2$
$2 \rightarrow 260$
$1 \rightarrow 130$
Now, Height $=130 \times \sqrt{3}=130 \sqrt{3}$

S14. Ans.(a)

Sol. we are given $p^{2}-24 p+45=0$
$\Rightarrow \mathrm{p}^{2}-24 \mathrm{p}+44+1=0 \Rightarrow \mathrm{p}^{2}-2 \mathrm{p}-22 \mathrm{p}+44+1=0$
$\Rightarrow \mathrm{p}(\mathrm{p}-2)-22(\mathrm{p}-2)+1=0$
$p-22+\frac{1}{p-2}=0 \Rightarrow \mathrm{p}-2+\frac{1}{p-2}=20$

S15. Ans.(a)

Sol. Sum of ratio $=3+5+7+9=24$
Highest price $=\frac{9}{24} \times 12024 \times 4=18036$

S16. Ans.(b)

Sol.

We know, $\mathrm{AB}+\mathrm{DC}=\mathrm{AD}+\mathrm{BC}$
Where $A D=20 \mathrm{~cm}$
$\mathrm{BC}=\mathrm{BQ}+\mathrm{QC}=15+18=33$
then, Perimeter $=\mathrm{AB}+\mathrm{BC}+\mathrm{CD}+\mathrm{DA}$
$=2(A D+B C)$
$=2(20+33)=106 \mathrm{~cm}$

S17. Ans.(b)

Sol.

$\angle \mathrm{BOC}=90-\frac{1}{2} \angle \mathrm{~A}$
$=90-30=60^{\circ}$

S18. Ans.(c)

Sol. $\sin A+\sin B=\frac{-21}{65}$,
$\cos A+\cos B=\frac{-27}{65}$ \qquad
Add $e q^{n}$ (i) and (ii) after squaring
$\sin ^{2} \mathrm{~A}+\sin ^{2} \mathrm{~B}+2 \sin \mathrm{~A} \sin \mathrm{~B}+\cos ^{2} \mathrm{~A}+\cos ^{2} \mathrm{~B}+2 \cos$ $\mathrm{A} \cos \mathrm{B}$
$=\left(\frac{-21}{65}\right)^{2}+\left(\frac{-27}{65}\right)^{2}$
$\Rightarrow 2+2(\sin A \sin B+\cos A \cos B)=\frac{18}{65}$
$1+\sin A \sin B+\cos A \cos B=\frac{9}{65}$
$\cos (A-B)=\frac{-56}{65}$

S19. Ans.(c)

Sol. Quantity of mango juice $=300 \times \frac{250}{300} \times \frac{240}{300}$ $=200 \mathrm{lt}$.
Remaining Quantity of mango juice $=200 \mathrm{lt}$.

S20. Ans.(b)
Sol. Rate of Interest $=\left[\left(\frac{\text { Amount }}{\text { Principle }}\right)^{t}-1\right] \times 100$
$\Rightarrow\left[\left(\frac{3212}{2920}\right)^{1}-1\right] \times 100$
$=\left[\left(\frac{11}{10}\right)^{1}-1\right] \times 100=10 \%$

S21. Ans.(c)

Sol. Area of triangle $=r \times S, r=\frac{\Delta}{S}$
Semi - perimeter $S=\frac{16+20+28}{2}=32$
Area of $\Delta \mathrm{ABC}=\sqrt{S(S-a)(S-b)(S-c)}$
$=\sqrt{32 \times 16 \times 12 \times 4}$
$=$
$\sqrt{2 \times 2 \times 3 \times 2 \times 2}$
$=64 \sqrt{2 \times 3}$
$=64 \sqrt{6}$
Inradius $=\frac{64 \sqrt{6}}{32}=2 \sqrt{6} \mathrm{~cm}$

S22. Ans.(b)

Sol. $20 \%=\frac{1}{5}, 30 \%=\frac{3}{10}$

	Initial	Final
Price	5	4
Sale	10	13
	50	52

$\%$ increase $=\frac{2}{50} \times 100=4 \%$ increase

S23. Ans.(c)

Sol.

$\because \tan 70^{\circ}=\left(\tan 50^{\circ}+\tan 20^{\circ}\right)$
$\Rightarrow \frac{\tan 50^{\circ}+\tan 20}{1-\tan 50 \tan 20}=\tan 70^{\circ}$
$\Rightarrow \tan 50+\tan 20=\tan 70-(\tan 70 \tan 20) \tan 50^{\circ}$
$\Rightarrow 2 \tan 50+\tan 20=\tan 70 \quad\left(\because a+b=90^{\circ}\right)$
$\Rightarrow 2 \tan 50+\tan 20=\cot 20^{\circ}$

S24. Ans.(b)

Sol. Total work $=(3+5+7) \times 12=180$ units
$\frac{4}{5}$ th part of work $=\frac{180 \times 4}{5}=144$ unit
Time taken by $(A+B)$ for $\frac{4}{5}$ th part $=\frac{144}{8}=18$ days

S25. Ans.(b)

Sol. $\frac{12}{100}(A+B)=\frac{18}{100}(A-B)$
$\Rightarrow 4(\mathrm{~A}+\mathrm{B})=6(\mathrm{~A}-\mathrm{B}) \Rightarrow 4 \mathrm{~A}+4 \mathrm{~B}=6 \mathrm{~A}-6 \mathrm{~B}$
$\Rightarrow 2 \mathrm{~A}=10 \mathrm{~B} \Rightarrow \mathrm{~A}=5 \mathrm{~B}$
Required $\%=\frac{A}{B} \times 100=\frac{5 B}{B} \times 100=500 \%$

S26. Ans.(b)
Sol.

Let the base is b.
We know that the area of parallelogram $=h \times b$
A.T.Q, $\quad \mathrm{h}=3 \mathrm{~b}$
$\Rightarrow 3 \mathrm{~b} \times \mathrm{b}=675$
$\Rightarrow b^{2}=225$
$\mathrm{b}=15 \mathrm{~m}$

S27. Ans.(b)

Sol.

In $\triangle \mathrm{OPR}, \angle \mathrm{P}=90^{\circ}$
Applying Pythagoras theorem
Length of OP $=\sqrt{(12)^{2}-(8)^{2}}=4 \sqrt{5}$
In $\triangle P R Q$,
Length of $P Q=\sqrt{10^{2}-8^{2}}=6$
Length of $O Q=6+4 \sqrt{5}$

S28. Ans.(c)

Sol.

From mass - point geometry, mass on point B and C will be 3 and 11 respectively,
Therefore, BD : DC = 11:3

Sol.

Total frequency $=9+22+f_{1}+20+12+8$
$100=71+f_{1}$
$f_{1}=29$
Highest frequency is 29, which lies in interval (20.5-30.5).

S30. Ans. (a)
Sol. Required probability $=\frac{13 c_{1}}{52 c_{1}}$ $=\frac{1}{4}$

